Okara–by-product from soy processing: characteristic, properties, benefits, and potential perspectives for industry
DOI:
https://doi.org/10.52756/ijerr.2022.v28.009Keywords:
Soyben, nutrition, food technology, perspectives, innovative foodsAbstract
A by-product from processing of soy into drinks and tofu is the insoluble portion of soybeans, a high-fiber product called okara. With the growing interest in plant substitutes for meat and milk, which are produced mainly from soy, the amount of this by-product, which is often considered waste, is also increasing. Its processing then causes considerable financial and environmental problems. In addition to fiber, okara is rich in proteins, fats, micronutrients, and various phytochemicals. However, these are often in an unavailable form and, in addition, due to okara's high water content, it is easily perishable. Therefore, this review article aimed to gather information on the nutritional composition of the okara, possible adjustments to make unavailable nutrients available, and stabilization at the end of its new incorporation into the food chain either in the capacity of soil amendments and fertilizer to improve food quality and size or directly as a food ingredient.
References
Addo, K., Burton, D., Stuart, M. R., Burton, H. R., & Hildebrand, D. F. (1993). Soybean Flour Lipoxygenase lsozyme Mutant Effects on Bread Dough Volatiles. Journal of Food Science. 58(3): 583–585. doi: 10.1111/j.1365-2621.1993.tb04328.x
Aguado, A. (2010). Development of okara powder as a gluten free alternative to all purpose flour for value added use in baked goods [Thesis]. Faculty of the Graduate School of the University of Maryland, College Park, Md, U.S.A. http://hdl.handle.net/1903/11281
Agyei, D. (2015). Bioactive Proteins and Peptides from Soybeans. Recent Patents on Food, Nutrition & Agriculture. 7(2): 100–107. doi: 10.2174/221279840766615062913
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 99: 19–33. doi: 10.1016/j.chemosphere.2013.10
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 6(2): 105–121. doi: 10.1016/j.jare.2013.07.006
Ahn, S. H., Oh, S. C., Choi, I., Han, G., Jeong, H., Kim, K., & Yang, I. (2010). Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts. Journal of Hazardous Materials. 178(1-3): 604–611. doi: 10.1016/j.jhazmat.2010.01.128
Anderson, J. W. (2003). Diet first, then medication for hypercholesterolemia (editorial). Journal of the American Medical Association. 290: 531–533.
Anderson, R. L., & Wolf, W.J. (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of Nutrition. 125: 518S-588S
Aranda, V., Macci, C., Peruzzi, E., & Masciandaro, G. (2015). Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. Journal of Environmental Management. 147: 278–285. doi: 10.1016/j.jenvman.2014.08.024
Axelrod, B., & T.M. (1981). Cheesborough, and S. Laasko, Lipoxygenase from Soybean. Methods Enzymology. 71: 441–451.
Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release. 181: 11–21. doi: 10.1016/j.jconrel.2014.02.020
Aziah, A. A., Noor, A. Y., & Ho, L. H. (2012). Physicochemical and organoleptic properties of cookies incorporated with legume flour. International Food Research Journal. 19(4): 1539-1543.
Barnabás, B., Jäger, K., & Fehér, A. (2007). The effect of drought and heat stress on reproductive processes in cereals. Plant. Cell & Environment. 31: 11–38. doi: 10.1111/j.1365-3040.2007.01727.x
Bashari, A., Rouhani Shirvan, A., & Shakeri, M. (2018). Cellulose-based hydrogels for personal care products. Polymers for Advanced Technologies. 29(12): 2853-2867 doi: 10.1002/pat.4290
Becker-Ritt, A. B., Mulinari, F., Vasconcelos, I. M., & Carlini, C. R. (2004). Antinutritional and/or toxic factors in soybean [Glycine max (L.) Merril] seeds: comparison of different cultivars adapted to the southern region of Brazil. Journal of the Science of Food and Agriculture. 84(3): 263–270. doi: 10.1002/jsfa.1628
Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-Glucosidases: Cloning, Properties, and Applications. Critical Reviews in Biotechnology. 22(4): 375–407. doi: 10.1080/07388550290789568
Bhunia, B., Basak, B., & Dey, A. (2012). A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology. 3: 448-457.
Bourzac, K. (2013). Water: The flow of technology. Nature. 501(7468): S4–S6. doi:10.1038/501s4a
Chan, W.M., & Ma, C.Y. (1999). Acid modification of proteins from soymilk residue (okara). Food Research International. 32(2): 119–127. doi: 10.1016/s0963-9969(99)00064-2
Chiam, Z., Lee, J. T. E., Tan, J. K. N., Song, S., Arora, S., Tong, Y. W., & Tan, H. T. W. (2021). Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. Journal of Environmental Management. 286: 112163. doi: 10.1016/j.jenvman.2021.112163
Childress, L., Gay, A., Zargar, A., & Ito, M. K. (2013). Review of red yeast rice content and current Food and Drug Administration oversight. Journal of Clinical Lipidology. 7(2): 117–122. doi: 10.1016/j.jacl.2012.09.003
Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae. 196: 28–38. doi: 10.1016/j.scienta.2015.08.037
Correddu, F., Lunesu, M. F., Buffa, G., Atzori, A. S., Nudda, A., Battacone, G., & Pulina, G. (2020). Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals. 10(1): 131. doi:10.3390/ani10010131
De Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M.F.P. (2019). Environmental flow limits to global groundwater pumping. Nature. 574(7776): 90–94. doi:10.1038/s41586-019-1594-4
Delgado-Moreno, L., & Peña, A. (2009). Compost and vermicompost of olive cake to bioremediate tria-zines-contaminated soil. Science of the total Environment. 407(5): 1489–1495. doi:10.1016/j.scitotenv.2008.10.047
Du, C., Abdullah, J.J., Greetham, D., Fu, D., Yu, M., & Ren, L., Lu, D. (2018). Valorization of food waste into biofertiliser and its field application. Journal of Cleaner Production. 187: 273–284. doi:10.1016/j.jclepro.2018.03.211
Erickson, D. R. (Ed.). (2015). Practical handbook of soybean processing and utilization. AOCS: Press:USA. Pp. 584. ISBN: 978-0-935315-63-9
European Food Safety Authority. (2011). Scientific opinion on the substantiation of health claims related to monacolin K from red yeast rice and maintenance of normal blood LDL cholesterol concentrations (ID 1648, 1700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., & Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science. 8: 1147. doi:10.3389/fpls.2017.01147
FAO. (2021). Food Outlook: Biannual Report on Global Food Markets. Rome. doi: 10.4060/cb4479en
Farrell, C., Ang, X. Q., & Rayner, J. P. (2013). Water-retention additives increase plant available water in green roof substrates. Ecological Engineering. 52: 112–118. doi:10.1016/j.ecoleng.2012.12.098
Faustino, M., Veiga, M., Sousa, P., Costa, E., Silva, S., & Pintado, M. (2019). Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules. 24(6): 1056. doi:10.3390/molecules24061056
Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT. 113: 108324. doi:10.1016/j.lwt.2019.108324
FAO. (2009). Gourmet mushroom empire from coffee grounds (2009). Available from: http://www.fao.org/nr/sustainability/food-loss-and-waste/database/projects-detail/en/c/135097/
Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2017). Soil Biology Changes as a Consequence of Organic Amendments Subjected to a Severe Drought. Land Degradation & Development. 28(3): 897–905. doi:10.1002/ldr.2663
Fujita, T., Funako, T., & Hayashi, H. (2004). 8-Hydroxydaidzein, an Aldose Reductase Inhibitor from Okara Fermented withAspergillussp. HK-388. Bioscience, Biotechnology, and Biochemistry. 68(7): 1588–1590. doi:10.1271/bbb.68.1588
Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology. 26(2): 68–87. doi:10.1016/j.tifs.2012.03.003
García-Martínez, A. M., Díaz, A., Tejada, M., Bautista, J., Rodríguez, B., Santa María, C., & Parrado, J. (2010). Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: Effects on soil biochemistry and biodiversity. Process Biochemistry. 45(7): 1127–1133. doi:10.1016/j.procbio.2010.04.005
Genta, H., Genta, M., Álvarez, N., & Santana, M. (2002). Production and acceptance of a soy candy. Journal of Food Engineering. 53(2): 199–202. doi:10.1016/s0260-8774(01)00157-1
Gómez, I., Rodríguez-Morgado, B., Parrado, J., García, C., Hernández, T., & Tejada, M. (2014). Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. Journal of Hazardous Materials. 273: 207–214. doi:10.1016/j.jhazmat.2014.03.051
Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., & Kim, K.-H. (2017). Application of drum compost and ver-micompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management. 200: 243–252. doi:10.1016/j.jenvman.2017.05.073
Grafton, R.Q., Williams, J., Perry, C.J., Molle, F., Ringler, C., Steduto, P., & Allen, R.G. (2018). The paradox of irrigation efficiency. Science. 361(6404): 748–750. doi:10.1126/science.aat9314
Grizotto, R.K., Rufi, C.R.G., Yamada, E.A., & Vicente, E. (2010). Evaluation of the quality of a molded sweet biscuit enriched with okara flour. Ciência e Tecnologia de Alimentos. 30: 270–275. doi:10.1590/s0101-20612010000500041
Guimaraes, R. M., Ida, E. I., Falcao, H. G., de Rezende, T. A. M., de Santana Silva, J., Alves, C. C. F., & Egea, M. B. (2020). Evaluating technological quality of okara flours obtained by different drying processes. LWT- Food Science and Technology. 123: 109062.
Gupta, S., & Pawar, S. B. (2018). An integrated approach for microalgae cultivation using raw and anaerobic digested wastewaters from food processing industry. Bioresource Technology. 269: 571–576. doi:10.1016/j.biortech.2018.08.113
Hagman, L., Blumenthal, A., Eklund, M., & Svensson, N. (2018). The role of biogas solutions in sustainable biorefineries. Journal of Cleaner Production. 172: 3982–3989. doi:10.1016/j.jclepro.2017.03.180
Hawa, A., Satheesh, N., & Kumela, D. (2018). Nutritional and anti-nutritional evaluation of cookies prepared from okara, red teff and wheat flours. International Food Research Journal. 25(5): 2042-2050.
Hildebrand, D. F., Versluys, R. T., & Collins, G. B. (1991). Changes in lipoxygenase isozyme levels during soybean embryo development. Plant Sci-ence. 75(1): 1–8. doi:10.1016/0168-9452(91)90002-p
Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., & Xue, J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture. 90(7): 1194–1202. doi:10.1002/jsfa.3947
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., & Kikuchi, M. (2000). Soy Isoflavone Aglycones Are Absorbed Faster and in Higher Amounts than Their Glucosides in Humans. The Journal of Nutrition. 130(7): 1695–1699. doi:10.1093/jn/130.7.1695
Jackson, C.J., Dini, J., Lavandier, C., Rupasinghe, H.P., Faulkner, H., Poysa, V., DeGrandis, S. (2002). Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochemistry. 37(10): 1117–1123. doi:10.1016/s0032-9592(01)00323-5
Jankowiak, L., Jonkman, J., Rossier-Miranda, F. J., van der Goot, A. J., & Boom, R. M. (2014a). Exergy driven process synthesis for isoflavone recovery from okara. Energy. 74: 471–483. doi:10.1016/j.energy.2014.07.013
Jankowiak, L., Kantzas, N., Boom, R., & van der Goot, A. J. (2014b). Isoflavone extraction from okara using water as extractant. Food Chemistry. 160: 371–378. doi:10.1016/j.foodchem.2014.03.082
Jankowiak, L., Trifunovic, O., Boom, R. M., & van der Goot, A. J. (2014c). The potential of crude okara for isoflavone production. Journal of Food Engineering. 124: 166–172. doi:10.1016/j.jfoodeng.2013.10.011
Jiang, P., Mu, S., Li, H., Li, Y., Feng, C., Jin, J.M., & Tang, S.Y. (2015). Design and Application of a Novel High-throughput Screening Technique for 1-Deoxynojirimycin. Scientific Reports. 5(1): 8563 doi:10.1038/srep08563
Jiménez-Escrig, A., Alaiz, M., Vioque, J., & Rupérez, P. (2009). Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase. European Food Research and Technology. 230(4): 655–663. doi:10.1007/s00217-009-1203-0
Jiménez-Escrig, A., Alaiz, M., Vioque, J., & Rupérez, P. (2009). Health-promoting activities of ultra-filtered okara protein hydrolysates released by in vitro gastrointestinal digestion: identification of active peptide from soybean lipoxygenase. European Food Research and Technology. 230(4): 655–663. doi:10.1007/s00217-009-1203-0
Jiménez-Escrig, A., Tenorio, M. D., Espinosa-Martos, I., & Rupérez, P. (2008). Health-Promoting Effects of a Dietary Fiber Concentrate from the Soybean Byproduct Okara in Rats. Journal of Agricultural and Food Chemistry. 56(16): 7495–7501. doi:10.1021/jf800792y
Kadian, N., Malik, A., Satya, S., & Dureja, P. (2012). Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. Journal of Environmental Management. 95: S199–S202. doi:10.1016/j.jenvman.2010.10.023
Katayama, M., & Wilson, L. A. (2008). Utilization of Okara, a Byproduct from Soymilk Production, through the Development of Soy-Based Snack Food. Journal of Food Science. 73(3): S152–S157. doi:10.1111/j.1750-3841.2008.00662.x
Khare, S. K., Jha, K., & Gandhi, A. P. (1995). Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresource Technology. 54(3): 323–325. doi:10.1016/0960-8524(95)00155-7
King, J. M., Chin, S. M., Svendsen, L. K., Reitmeier, C. A., Johnson, L. A., & Fehr, W. R. (2001). Processing of lipoxygenase-free soybeans and evaluation in foods. Journal of the American Oil Chemists’ Society. 78(4): 353–360. doi:10.1007/s11746-001-0268-1
Li, B., Qiao, M., & Lu, F. (2012). Composition, Nutri-tion, and Utilization of Okara (Soybean Residue). Food Reviews International. 28(3): 231–252.
doi:10.1080/87559129.2011.595023
Li, B., Qiao, M., & Lu, F. (2012). Composition, nutrition, and utilization of okara (soybean residue). Food Reviews International. 28(3): 231-252.
Li, B., Qiao, M., & Lu, F. (2012). Composition, Nutri-tion, and Utilization of Okara (Soybean Residue). Food Reviews International. 28(3): 231–252.
doi:10.1080/87559129.2011.595023
Li, B., Zhang, Y., Yang, H., & Li, R. (2008). Effect of drying methods on the functional properties of bean curd dregs. J. Henan Inst. Sci. Technol. 36(3): 64-66.
Li, S., Chen, Y., Li, K., Lei, Z., & Zhang, Z. (2016). Characterization of physicochemical properties of fermented soybean curd residue by Morchella esculenta. International Biodeterioration & Biodegradation. 109: 113–118. doi:10.1016/j.ibiod.2016.01.020
Li, S., Zhu, D., Li, K., Yang, Y., Lei, Z., & Zhang, Z. (2013). Soybean Curd Residue: Composition, Utilization, and Related Limiting Factors. ISRN Industrial Engineering. 2013: 1–8. doi:10.1155/2013/423590
Lobato, L.P., Iakmiu, C.Pereira, A. E., Lazaretti, M. M., Barbosa, D. S., Carreira, C. M., Mandarino, J. M. G., & Grossmann, M. V. E. (2011). Snack bars with high soy protein and isoflavone content for use in diets to control dyslipidaemia. International Journal of Food Sciences and Nutrition. 63(1): 49–58. doi:10.3109/09637486.2011.596148
Locascio, S.J. (2005). Management of irrigation for vegetables: past, present, and future. Hort. Technology. 15(3): 482–485. https://doi.org/10.21273/HORTTECH.15.3.0482
Lu, F., Liu, Y., & Li, B. (2013). Okara dietary fiber and hypoglycemic effect of okara foods. Bioactive Carbohydrates and Dietary Fibre. 2(2): 126–132.
doi:10.1016/j.bcdf.2013.10.002
Lui, K. (1997). Soybeans: chemistry, technology, and utilization. Chapman and Hall: New York. Pp. 532. ISBN: 978-0-8342-1299-2.
Mateos-Aparicio, I. (2011). Beans by-products, potential sources for functional ingredients. In: Popescu E, Golubev I, editors. Beans: nutrition, consumption and health. New York (NY): Nova Science Publishers Inc.. Pp. 233–248.
Mateos-Aparicio, I., Mateos-Peinado, C., Jiménez-Escrig, A., & Rupérez, P. (2010b). Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydrate Polymers. 82(2): 245–250. doi: 10.1016/j.carbpol.2010.04.020
Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Suárez, M. J. (2010). Isolation and characterisation of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod. Food Chemistry. 122(1): 339–345. doi:10.1016/j.foodchem.2010.02.042
Mateos-Aparicio, I., Redondo-Cuenca, A., Villanueva-Suárez, M.-J., Zapata-Revilla, M.A., & Tenorio-Sanz, M.D. (2010a). Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Science and Technology. 43(9): 1467–1470. doi:10.1016/j.lwt.2010.05.008
Nagano, T., Arai, Y., Yano, H., Aoki, T., Kurihara, S., Hirano, R., & Nishinari, K. (2020). Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development–A review. Food Hydrocolloids. 105964. doi:10.1016/j.foodhyd.2020.105964
Nishibori, N., Kishibuchi, R., & Morita, K. (2016). Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action. Journal of Dietary Supplements. 14(3): 241–251. doi: 10.1080/19390211.2016.1207744
Oh, S., Kim, C., & Lee, S. (2006). Characterization of the functional properties of soy milk cake fermented by Bacillus sp. Food Science and Biotechnology. 15 (5): 704
Oh, S.M., Jang, E.K., & Seo, J.H., & Ryu, M.J. & Lee, S.P. (2007). Characterization of γ-polyglutamic acid produced from the solid-state fermentation of soybean milk cake using Bacillus sp. Food Science and Biotechnology. 16(4): 509-514.
Ohno, A., Ano, T., & Shoda, M. (1996). Use of soybean curd residues, okara, for the solid state substrate in the production of a lipopepetide antibiotic, Iturin A, by Bacillus subtilis NB22. Process Biochem. 31: 801–806.
Ohno, A., Ano, T., & Shoda, M. (1993). Production of the antifungal peptide antibiotic, iturin by Bacillus subtilis NB22 in solid state fermentation. Journal of Fermentation and Bioengineering. 75(1): 23–27. doi: 10.1016/0922-338x(93)90172-5
Orts, A., Cabrera, S., Gómez, I., Parrado, J., Rodriguez-Morgado, B., & Tejada, M. (2017). Use of okara in the bioremediation of chlorpyrifos in soil: Effects on soil biochemical properties. Applied Soil Ecology. 121: 172–176. doi: 10.1016/j.apsoil.2017.09.042
Orts, A., Revilla, E., Rodriguez-Morgado, B., Castaño, A., Tejada, M., Parrado, J., & García-Quintanilla, A. (2019). Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon. 5(6): e01958. doi:10.1016/j.heliyon.2019.e01958
Orts, Á., Tejada, M., Parrado, J., Paneque, P., García, C., Hernández, T., & Gómez-Parrales, I. (2018). Production of biostimulants from okara through enzymatic hydrolysis and fermentation with Bacillus licheniformis: comparative effect on soil biological properties. Environmental Technology. 40(16): 2073–2084. doi: 10.1080/09593330.2018.1436596
Ostermann-Porcel, M. V., Quiroga-Panelo, N., Rinaldoni, A. N., & Campderrós, M. E. (2017). Incorporation of Okara into Gluten-Free Cookies with High Quality and Nutritional Value. Journal of Food Quality. 2017: 1–8. doi:10.1155/2017/4071585
Pareyt, B., Talhaoui, F., Kerckhofs, G., Brijs, K., Goesaert, H., Wevers, M., & Delcour, J.A. (2009). The role of sugar and fat in sugar-snap cookies: structural and textural properties. Journal of Food Engineering. 90(3): 400–408.
Park, J., Choi, I., & Kim, Y. (2015). Cookies formulated from fresh okara using starch, soy flour and hydroxypropyl methylcellulose have high quality and nutritional value. LWT-Food Science and Technology. 63(1): 660–666. doi:10.1016/j.lwt.2015.03.110
Parrado, J., Bautista, J., Romero, E. J., García-Martínez, A. M., Friaza, V., & Tejada, M. (2008). Production of a carob enzymatic extract: Potential use as a biofertilizer. Bioresource Technology. 99(7): 2312–2318. doi:10.1016/j.biortech.2007.05.02
Peltre, C., Gregorich, E. G., Bruun, S., Jensen, L. S., & Magid, J. (2017). Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biology and Biochemistry. 104: 117–127. doi: 10.1016/j.soilbio.2016.10.016
Peng, W., & Pivato, A. (2017). Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy. Waste and Biomass Valorization. Pp. 1-18. doi:10.1007/s12649-017-0071-2
Pennisi, E. (2008). The Blue Revolution, Drop by Drop, Gene by Gene. Science. 320(5873): 171–173. doi: 10.1126/science.320.5873.171
Puchalska, P.M., García, M.C., & Marina, M.L. (2017). Advances in the determination of bioactive peptides in foods. In: Aguilar, V., Otero, C. (Eds.), Frontiers in Bioactive Compounds. Bentham Science Publishers, Sharjah, UAE. Pp. 24–53.
Radočaj, O., & Dimić, E. (2013). Valorization of Wet Okara, a Value-Added Functional Ingredient, in a Coconut-Based Baked Snack. Cereal Chemistry Journal. 90(3): 256–262. doi: 10.1094/cchem-11-12-0145-r
Rashad, M.M., Mahmoud, A.E., Abou, H.M. & Nooman M.U. (2011). Improvement of nutritional quality and antioxidant activities of yeast fermented soybean curd residue. African Journal of Biotechnology. 10 (28): 5504-5513.
Redondo-Cuenca, A., Villanueva-Suárez, M. J., & Mateos-Aparicio, I. (2008). Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chemistry. 108(3): 1099–1105. doi: 10.1016/j.foodchem.2007.11.061
Redondo-Cuenca, A., Villanueva-Suárez, M. J., Rodríguez-Sevilla, M. D., & Mateos-Aparicio, I. (2007). Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry. 101(3): 1216–1222. doi: 10.1016/j.foodchem.2006.03.025
Rehman, K. ur, Rehman, A., Cai, M., Zheng, L., Xiao, X., Somroo, A. A., & Zhang, J. (2017). Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). Journal of Cleaner Production. 154: 366–373. doi:10.1016/j.jclepro.2017.04.019
Reynolds, K., Chin, A., Lees, K., Nguyen, A., Bu-jnowski, D., & He, J. (2006). A meta-analysis of the effect of soy protein supplementation on serum lipids. Am. J. Cardiol. 98(5): 633–640.
Rinaldi, V. E. A., Ng, P. K. W., & Bennink, M. R. (2000). Effects of Extrusion on Dietary Fiber and Isoflavone Contents of Wheat Extrudates Enriched with Wet Okara. Cereal Chemistry Journal. 77(2): 237–240. doi: 10.1094/cchem.2000.77.2.237
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.H. (2018). Emerging trends in global freshwater availability. Nature. 557(7707): 651–659. doi: 10.1038/s41586-018-0123-1
Rodríguez-Morgado, B., Gómez, I., Parrado, J., & Tejada, M. (2014). Behaviour of oxyfluorfen in soils amended with edaphic biostimu-lants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties. Environmental Science and Pollution Research. 21(18): 11027–11035. doi:10.1007/s11356-014-3040-3
Rodríguez-Morgado, B., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2015b). Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers. Journal of Hazardous Materials. 300: 235–242. doi: 10.1016/j.jhazmat.2015.05.045
Rodríguez-Morgado, B., Gómez, I., Parrado, J., García-Martínez, A. M., Aragón, C., & Tejada, M. (2015a). Obtaining edaphic biostimu-lants/biofertilizers from different sewage sludges. Effects on soil biological properties. Environmental Technology. 36(17): 2217–2226. doi: 10.1080/09593330.2015.1024760
Sanjukta, S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology. 50: 1–10. doi: 10.1016/j.tifs.2016.01.010
Setti, L., Francia, E., Pulvirenti, A., Gigliano, S., Zac-cardelli, M., Pane, C., … Ronga, D. (2019). Use of black soldier fly [Hermetia illucens (L.), Diptera: Stratiomyidae] larvae processing residue in peat-based growing media. Waste Management. 95: 278–288. doi: 10.1016/j.wasman.2019.06.017
Shi, H., Zhang, M., Wang, W., & Devahastin, S. (2020). Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Bioscience. 36: 100610. doi:10.1016/j.fbio.2020.100610
Shi, M., Yang, Y., Hu, X., & Zhang, Z. (2014). Effect of ultrasonic extraction conditions on antioxidative and immune-modulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue. Food Chemistry. 155: 50–56. doi: 10.1016/j.foodchem.2014.01.03
Shin, D.J., Kim, W., & Kim, Y. (2013). Physicochemical and sensory properties of soy bread made with germinated, steamed, and roasted soy flour. Food Chemistry. 141(1): 517–523. doi: 10.1016/j.foodchem.2013.03.005
Singh, A., Meena, M., Kumar, D., Dubey, A. K., & Hassan, M. I. (2015). Structural and Functional Analysis of Various Globulin Proteins from Soy Seed. Critical Reviews in Food Science and Nutrition. 55(11): 1491–1502. doi:10.1080/10408398.2012.700340
Songsrirote, K., Naiviriya, T., Rungwipoosana, T., & Gutrasaeng, C. (2017). The study of properties and nutrient determination of hydrogel made of soybean meal (okara) using microwave-assisted heating. Materials Today: Proceedings. 4(5): 6519–6527. doi: 10.1016/j.matpr.2017.06.162
Spring. (2005). Okara-Overview of Current Utilization. Soy 20/20. Pp.1–19. Retrieved from www.soy2020.ca
Stabnikova, O., Goh, W.K., Ding, H.B., Tay, J.H., & Wang, J.Y. (2005). The use of sewage sludge and horticultural waste to develop artificial soil for plant cultivation in Singapore. Bioresource Technology. 96(9): 1073–1080. doi: 10.1016/j.biortech.2004.09.02
Stanojevic, S.P., Barac, M.B., Pesic, M.B., Jankovic, V.S., & Vucelic-Radovic, B.V. (2013). Bioactive Proteins and Energy Value of Okara as a Byproduct in Hydrothermal Processing of Soy Milk. Journal of Agricultural and Food Chemistry. 61(38): 9210–9219. doi:10.1021/jf4012196
Stanojevic, S. P., Barac, M. B., Pesic, M. B., Zilic, S. M., Kresovic, M. M., & Vucelic-Radovic, B. V. (2014). Mineral Elements, Lipoxygenase Activity, and Antioxidant Capacity of Okara as a Byproduct in Hydrothermal Processing of Soy Milk. Journal of Agricultural and Food Chemistry. 62(36): 9017–9023. doi: 10.1021/jf501800s
Tan, W. K., Zhu, J., Lim, J. Y., Gao, Z., Loh, C. S., Li, J., & Ong, C. N. (2021). Use of okara-derived hydrogel for enhancing growth of plants by minimizing leaching and locking nutrients and water in growing substrate. Ecological Engineering. 159: 106122. doi: 10.1016/j.ecoleng.2020.106122
Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2019). Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling. 149: 413–426. doi: 10.1016/j.resconrec.2019.05.0
Tejada, M., & Benítez, C. (2014). Effects of crushed maize straw residues on soil biological properties and soil restoration. Land Degradation & Development. 25(5): 501–509. doi:10.1002/ldr.2316
Tejada, M., Benítez, C., Gómez, I., & Parrado, J. (2011). Use of biostimulants on soil restoration: Effects on soil biochemical properties and microbial community. Applied Soil Ecology. 49: 11–17. doi: 10.1016/j.apsoil.2011.07.009
Tejada, M., Gómez, I., Fernández-Boy, E., & Díaz, M.J. (2014). Effects of Sewage Sludge and Acacia dealbata Composts on Soil Biochemical and Chemical Properties. Communications in Soil Science and Plant Analysis. 45(5): 570–580. doi:10.1080/00103624.2013.874017
Tejada, M., Rodríguez-Morgado, B., Gómez, I., Franco-Andreu, L., Benítez, C., & Parrado, J. (2016). Use of biofertilizers obtained from sewage sludges on maize yield. European Journal of Agronomy. 78: 13–19. doi: 10.1016/j.eja.2016.04.014
Torres-Penaranda, A.V., Reitmeier, C.A., Wilson, L.A., Fehr, W.R., & Narvel, J.M. (2006). Sensory Characteristics of Soymilk and Tofu Made from Lipoxygenase-Free and Normal Soybeans. Journal of Food Science. 63(6): 1084–1087. doi: 10.1111/j.1365-2621.1998.tb15860.x
Ugolini, L., Cinti, S., Righetti, L., Stefan, A., Matteo, R., D’Avino, L., & Lazzeri, L. (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Industrial Crops and Products. 75: 15–23. doi:10.1016/j.indcrop.2014.11.026
Vahvaselkä, M., & Laakso, S. (2010). Production ofcis-9,trans-11-Conjugated Linoleic Acid in Camelina Meal and Okara by an Oat-Assisted Microbial Process. Journal of Agricultural and Food Chemistry. 58(4): 2479–2482. doi:10.1021/jf903383x
Van der Riet, W. B., Wight, A. W., Cilliers, J. J. L., & Datel, J. M. (1989). Food chemical investigation of tofu and its byproduct okara. Food Chemistry. 34(3): 193–202. doi: 10.1016/0308-8146(89)90140-4
Vichasilp, C., Nakagawa, K., Sookwong, P., Suzuki, Y., Kimura, F., Higuchi, O., & Miyazawa, T. (2009). Optimization of 1-Deoxynojirimycin Extraction from Mulberry Leaves by Using Response Surface Methodology. Bioscience, Biotechnology, and Biochemistry. 73(12): 2684–2689. doi:10.1271/bbb.90543
Vong, W. C., & Liu, S.Q. (2016a). Biovalorisation of okara (soybean residue) for food and nutrition. Trends in Food Science & Technology. 52: 139–147. doi:10.1016/j.tifs.2016.04.011
Vong, W. C., & Liu, S.Q. (2016b). Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts. Journal of the Science of Food and Agriculture. 97(1): 135–143. doi:10.1002/jsfa.7700
Wadhwa, M, Bakshi, M.P.S., & Makkar, H.P.S. (2015). Wastes to worth: value added products from fruit and vegetable wastes. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutrition and Natural Resources. 10(043): 1-26. doi:10.1079/pavsnnr201510043
Wang, H.J., & Murphy, P. A. (1996). Mass Balance Study of Isoflavones during Soybean Processing. Journal of Agricultural and Food Chemistry. 44(8): 2377–2383. doi: 10.1021/jf950535p
Wang, J., Kuang, H., Zhang, Z., Yang, Y., Yan, L., Zhang, M., & Guan, Y. (2020). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal. 8(3): 432–439. doi: 10.1016/j.cj.2019.08.008
Wang, T., Qin, G.X., Sun, Z.W., & Zhao, Y. (2014). Advances of Research on Glycinin and β-Conglycinin: A Review of Two Major Soybean Allergenic Proteins. Critical Reviews in Food Science and Nutrition. 54(7): 850–862. doi:10.1080/10408398.2011.613534
Wilkens, W. F., & Lin, F. M. (1970). Gas chromato-graphic and mass spectral analyses of soybean milk volatiles. Journal of Agricultural and Food Chemistry. 18(3): 333–336. doi: 10.1021/jf60169a003
Wilson, L.A. (1995). Soy foods. In: DR Erickson, edi-tor. Practical handbook of soybean processing and utilization. Champaign, Ill. : AOCS Press and the United Soybean Board. Pp. 428–459.
Wongkhalaung, C., Leelawatcharamas, V., & Japakaset, J. (2009). Utilisation of soybean residue to produce monacolin K-cholesterol lowering agent Songklanakarin. Journal of Science and Technology. 31: 35-39.
Yamanaka, K. (2005). Cultivation of new mushroom species in East Asia. Acta Edulis Fungi. 12 (2005): 343-349.
Yan, W., Kun, Y., Yang, X., Li, G., & Xianfeng, D. (2015). Physicochemical properties of soya bean protein gel prepared by microbial transglutaminase in the presence of okara. International Journal of Food Science & Technology. 50(11): 2402–2410. doi:10.1111/ijfs.12906
Yang, A., Smyth, H., Chaliha, M., & James, A. (2015). Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases. Food Science & Nutrition. 4(2): 207–215. doi: 10.1002/fsn3.274
Yin, T., Yao, R., Ullah, I., Xiong, S., Huang, Q., You, J., & Shi, L. (2019). Effects of nanosized okara dietary fiber on gelation properties of silver carp surimi. LWT. 111: 111–116. doi:10.1016/j.lwt.2019.05.023
Yokomizo, A., Takenaka, Y., & Takenaka, T. (2002). Antioxidative Activity of Peptides Prepared from Okara Protein. Food Science and Technology Research. 8(4): 357–359. doi: 10.3136/fstr.8.357
Yokota, T., Ohami, H., Ohishi, H., Hattori, T., & Watanabe, K. (1996). Repression of Acute Gastric Mucosal Lesions by Antioxidant-Containing Fraction from Fermented Products of Okara (Bean-Curd Residue). Journal of Nutritional Science and Vitaminology. 42(2): 167–172. doi: 10.3177/jnsv.42.167
Yuan, S., & Chang, S. K.C. (2007). Selected Odor Compounds in Soymilk As Affected by Chemical Composition and Lipoxygenases in Five Soybean Materials. Journal of Agricultural and Food Chemistry. 55(2): 426–431. doi: 10.1021/jf062274x
Zhang, Y., Liang, X., Yang, X., Liu, H., & Yao, J. (2014). An Eco-Friendly Slow-Release Urea Fertilizer Based on Waste Mulberry Branches for Potential Agriculture and Horticulture Applications. ACS Sustainable Chemistry & Engineering. 2(7): 1871–1878. doi: 10.1021/sc500204z
Zhang, Y., Wu, F., Liu, L., & Yao, J. (2013). Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydrate Polymers. 91(1): 277–283. doi: 10.1016/j.carbpol.2012.08.041
Zhu, J., Tan, W. K., Song, X., Gao, Z., WEN, Y., Ong, C. N., & Li, J. (2020). Converting Okara to Super absorbent Hydrogel as Soil Supplement for Enhancing Growth of Choy Sum (Brassica sp.) under Water-Limited Conditions. ACS Sustainable Chemistry & Engineering. 8(25): 9425–9433. doi: 10.1021/acssuschemeng.0c02181
Zhu, Y. P., Cheng, Y. Q., Wang, L. J., Fan, J. F., & Li, L. T. (2008). Enhanced Antioxidative Activity of Chinese Traditionally Fermented Okara (Meitauza) Prepared with Various Microorganism. International Journal of Food Properties. 11(3): 519–529. doi: 10.1080/10942910701472813
Zhu, Y.P., Fan, J. F., Cheng, Y. Q., & Li, L. T. (2008a). Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus subtilis B2. Food Control. 19(7): 654–661. doi:10.1016/j.foodcont.2007.07.00
Zhu, Y.P., Yamaki, K., Yoshihashi, T., Ohnishi Kameyama, M., Li, X.T., Cheng, Y.Q., & Li, L.T. (2010). Purification and Identification of 1-Deoxynojirimycin (DNJ) in Okara Fermented by Bacillus subtilis B2 from Chinese Traditional Food (Meitaoza). Journal of Agricultural and Food Chemistry. 58(7): 4097–4103. doi: 10.1021/jf9032377
Zu, X., Zhang, Z., Che, H., Zhang, G., Yang, Y., & Li, J. (2010). Nattokinase’s extraction from Bacillus subtilis fermented soybean curd residue and wet corn distillers’ grain and fibrinolytic activities. International Journal of Biology. 2(2): 120-125. doi:10.5539/ijb.v2n2p120