Changes of gut microbiota in FAP and UC patients in Mediterranean region of Turkey: an omic landscape to be discovered

Authors

  • Atil Bisgin Cukurova University, AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey; Cukurova University, Faculty of Medicine, Department of Medical Genetics, Adana, Turkey https://orcid.org/0000-0002-2053-9076
  • Abdullah Hanta Cukurova University, AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
  • Ahmet Rencuzogullari Koc University, School of Medicine, Department of General Surgery, Istanbul, Turkey
  • Ismail Cem Eray Cukurova University, Faculty of Medicine, Surgical Oncology Department, Adana, Turkey
  • Surajit Pathak Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
  • Ibrahim Boga Cukurova University, AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey; Cukurova University, Faculty of Medicine, Department of Medical Genetics, Adana, Turkey https://orcid.org/0000-0002-8967-8218

DOI:

https://doi.org/10.52756/ijerr.2023.v30.023

Keywords:

Dysbiosis, Familial adenomatous polyposis, Geographic Populations, Gut Microbiota, Ulcerative Colitis, 16S rRNA

Abstract

Inflammatory bowel diseases, familial adenomatous polyposis (FAP) and colorectal cancer (CRC) are associated with alterations of the intestinal microbiota. However, few data are available on the perpetuation of FAP and ulcerative colitis (UC) in relation to microbial dysbiosis. This study evaluated the UC and genetically confirmed FAP patients’ gut microbial balance in concordance to clinical outcome. Fecal materials (average mass of 0.54 g) were collected from three FAP and five UC patients to compare with healthy individuals as control group. Genomic materials of microbiota were isolated for next generation sequencing of 16S rRNA that was performed by using QIAseq 16S/ITS panel in Illumina Miseq Platform. Data processing and bioinformatics analysis were performed via CLC Genomic Workbench bioinformatics tool. The comparison between FAP, UC and control group revealed an alteration in the intestinal microbial composition. More in details, relative abundance of class levels showed statistical significance differences among FAP, UC and control groups. Our preliminary data focused on the ex-planation of how dysbiosis can lead to inflammation and drive processes together with host genetic profile that leads to colorectal carcinogenesis.

References

DiGiulio, D. B., Romero, R., Amogan, H. P., Kusanovic, J. P., Bik, E. M., Gotsch, F., Kim, C. J., Erez, O., Edwin, S., & Relman, D. A. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PloS One, 3(8), e3056. https://doi.org/10.1371/journal.pone.0003056

Earley, H., Lennon, G., Balfe, A., Kilcoyne, M., Clyne, M., Joshi, L., Carrington, S., Martin, S. T., Coffey, J. C., Winter, D. C., & O'Connell, P. R. (2015). A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis. PloS One, 10(10), e0135280. https://doi.org/10.1371/journal.pone.0135280

Fostira, F., Thodi, G., Sandaltzopoulos, R., Fountzilas, G., & Yannoukakos, D. (2010). Mutational spectrum of APC and genotype-phenotype correlations in Greek FAP patients. BMC Cancer, 10, 389. https://doi.org/10.1186/1471-2407-10-389

Hanta, A., Rencuzogullari, A., Boga, I., Eray,I.C., & Bisgin, A. (2021). Changes of gut microbiota in FAP and UC patients in Mediterranean Region of Turkey: an–omic landscape to be discovered. Genes, 12, x. https://doi.org/10.3390/xxxxx

Kim, J.H., Kim, Y.J., Oh, G.M., Jung, W., & Park, S.J. (2022). How is gut microbiome of patients with familial adenomatous polyposis different from healthy people? Medicine (Baltimore). 101(49), e32194. https://doi.org/10.1097/MD.0000000000032194.

Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., & Hazen, S. L. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576-585. https://doi.org/10.1038/nm.3145

Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E., Chung, D. C., Lochhead, P., Hold, G. L., El-Omar, E. M., Brenner, D., Fuchs, C. S., Meyerson, M., & Garrett, W. S. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207–215. https://doi.org/10.1016/j.chom.2013.07.007

Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jørgensen, T., Brandslund, I., Nielsen, H. B., Juncker, A. S., Bertalan, M., Levenez, F., Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541–546. https://doi.org/10.1038/nature12506

Lucas, C., Barnich, N., & Nguyen, H. T. T. (2017). Microbiota, Inflammation and Colorectal Cancer. International Journal of Molecular Sciences, 18(6), 1310. https://doi.org/10.3390/ijms18061310

Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, Nowak JA, Kosumi K, Hamada T, Masugi Y, Bullman S (2017). Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncology, 3(7): 921-927. https://doi.org/10.1001/jamaoncol.2016.6374

Mulder, I. E., Schmidt, B., Lewis, M., Delday, M., Stokes, C. R., Bailey, M., Aminov, R. I., Gill, B. P., Pluske, J. R., Mayer, C. D., & Kelly, D. (2011). Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PloS One, 6(12), e28279. https://doi.org/10.1371/journal.pone.0028279

Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009

Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69–75. https://doi.org/10.1097/MOG.0000000000000139

Sinha, R., Chen, J., Amir, A., Vogtmann, E., Shi, J., Inman, K. S., Flores, R., Sampson, J., Knight, R., & Chia, N. (2016). Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies. Cancer Epidemiology, Biomarkers & Prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 25(2), 407–416. https://doi.org/10.1158/1055-9965.EPI-15-0951

Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394–1401. https://doi.org/10.1053/j.gastro.2013.02.043

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63. https://doi.org/10.1038/nature09922

Published

2023-04-30

How to Cite

Bisgin, A., Hanta, A., Rencuzogullari, A., Eray, I. C., Pathak, S., & Boga, I. (2023). Changes of gut microbiota in FAP and UC patients in Mediterranean region of Turkey: an omic landscape to be discovered. International Journal of Experimental Research and Review, 30, 257–263. https://doi.org/10.52756/ijerr.2023.v30.023

Issue

Section

Articles