Changes of gut microbiota in FAP and UC patients in Mediterranean region of Turkey: an omic landscape to be discovered
DOI:
https://doi.org/10.52756/ijerr.2023.v30.023Keywords:
Dysbiosis, Familial adenomatous polyposis, Geographic Populations, Gut Microbiota, Ulcerative Colitis, 16S rRNAAbstract
Inflammatory bowel diseases, familial adenomatous polyposis (FAP) and colorectal cancer (CRC) are associated with alterations of the intestinal microbiota. However, few data are available on the perpetuation of FAP and ulcerative colitis (UC) in relation to microbial dysbiosis. This study evaluated the UC and genetically confirmed FAP patients’ gut microbial balance in concordance to clinical outcome. Fecal materials (average mass of 0.54 g) were collected from three FAP and five UC patients to compare with healthy individuals as control group. Genomic materials of microbiota were isolated for next generation sequencing of 16S rRNA that was performed by using QIAseq 16S/ITS panel in Illumina Miseq Platform. Data processing and bioinformatics analysis were performed via CLC Genomic Workbench bioinformatics tool. The comparison between FAP, UC and control group revealed an alteration in the intestinal microbial composition. More in details, relative abundance of class levels showed statistical significance differences among FAP, UC and control groups. Our preliminary data focused on the ex-planation of how dysbiosis can lead to inflammation and drive processes together with host genetic profile that leads to colorectal carcinogenesis.
References
DiGiulio, D. B., Romero, R., Amogan, H. P., Kusanovic, J. P., Bik, E. M., Gotsch, F., Kim, C. J., Erez, O., Edwin, S., & Relman, D. A. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PloS One, 3(8), e3056. https://doi.org/10.1371/journal.pone.0003056
Earley, H., Lennon, G., Balfe, A., Kilcoyne, M., Clyne, M., Joshi, L., Carrington, S., Martin, S. T., Coffey, J. C., Winter, D. C., & O'Connell, P. R. (2015). A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis. PloS One, 10(10), e0135280. https://doi.org/10.1371/journal.pone.0135280
Fostira, F., Thodi, G., Sandaltzopoulos, R., Fountzilas, G., & Yannoukakos, D. (2010). Mutational spectrum of APC and genotype-phenotype correlations in Greek FAP patients. BMC Cancer, 10, 389. https://doi.org/10.1186/1471-2407-10-389
Hanta, A., Rencuzogullari, A., Boga, I., Eray,I.C., & Bisgin, A. (2021). Changes of gut microbiota in FAP and UC patients in Mediterranean Region of Turkey: an–omic landscape to be discovered. Genes, 12, x. https://doi.org/10.3390/xxxxx
Kim, J.H., Kim, Y.J., Oh, G.M., Jung, W., & Park, S.J. (2022). How is gut microbiome of patients with familial adenomatous polyposis different from healthy people? Medicine (Baltimore). 101(49), e32194. https://doi.org/10.1097/MD.0000000000032194.
Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., & Hazen, S. L. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19(5), 576-585. https://doi.org/10.1038/nm.3145
Kostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E., Chung, D. C., Lochhead, P., Hold, G. L., El-Omar, E. M., Brenner, D., Fuchs, C. S., Meyerson, M., & Garrett, W. S. (2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe, 14(2), 207–215. https://doi.org/10.1016/j.chom.2013.07.007
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jørgensen, T., Brandslund, I., Nielsen, H. B., Juncker, A. S., Bertalan, M., Levenez, F., Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541–546. https://doi.org/10.1038/nature12506
Lucas, C., Barnich, N., & Nguyen, H. T. T. (2017). Microbiota, Inflammation and Colorectal Cancer. International Journal of Molecular Sciences, 18(6), 1310. https://doi.org/10.3390/ijms18061310
Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, Nowak JA, Kosumi K, Hamada T, Masugi Y, Bullman S (2017). Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncology, 3(7): 921-927. https://doi.org/10.1001/jamaoncol.2016.6374
Mulder, I. E., Schmidt, B., Lewis, M., Delday, M., Stokes, C. R., Bailey, M., Aminov, R. I., Gill, B. P., Pluske, J. R., Mayer, C. D., & Kelly, D. (2011). Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PloS One, 6(12), e28279. https://doi.org/10.1371/journal.pone.0028279
Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009
Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69–75. https://doi.org/10.1097/MOG.0000000000000139
Sinha, R., Chen, J., Amir, A., Vogtmann, E., Shi, J., Inman, K. S., Flores, R., Sampson, J., Knight, R., & Chia, N. (2016). Collecting Fecal Samples for Microbiome Analyses in Epidemiology Studies. Cancer Epidemiology, Biomarkers & Prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 25(2), 407–416. https://doi.org/10.1158/1055-9965.EPI-15-0951
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain-Raspaud, S., Trotin, B., Naliboff, B., & Mayer, E. A. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144(7), 1394–1401. https://doi.org/10.1053/j.gastro.2013.02.043
Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y. M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63. https://doi.org/10.1038/nature09922