Evaluating the Anti-proliferative and Apoptotic Role of Atrial Natriuretic Peptide in Colon Cancer Cell Lines

  • Alakesh Das Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Chennai- 603103, India https://orcid.org/0000-0003-2595-9309
  • Dikshita Deka Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Chennai- 603103, India https://orcid.org/0000-0001-5087-9023
  • Antara Banerjee Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Chennai- 603103, India https://orcid.org/0000-0002-5519-6878
  • Surajit Pathak Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Chennai- 603103, India https://orcid.org/0000-0002-7306-1272
Keywords: ANP, Apoptosis, Colon cancer, Peptides, Proliferation

Abstract

The use of small peptides and conventional anticancer drugs is gaining importance in oncology as small peptides may help increase chemo or radiation sensitivity. The present study aimed to study the impact of atrial natriuretic peptide (ANP) in reducing colon cancer cell proliferation in primary and metastatic colon cancer cell lines. The proliferation of colon cancer cell lines (SW480 and SW620) was analysed by CCK-8 assay and cell damage was analyzed by lactate dehydrogenase activity. Catalase activity assay was performed to measure the oxidative stress and antioxidant defense mechanisms in SW480 and SW620 cell lines. Subsequently, up or downregulation of cancer-specific gene expression such as BAX, Caspase-3, BCL-2, CDK-6, and PCNA genes were assessed after the treatment of small peptide ANP in SW480 and SW620 colon cancer cell lines. The ANP treatment decreased the colon cancer cell proliferation, upregulated the apoptosis-related gene expression (Caspase-3, BAX), downregulated the anti-apoptotic gene (BCL-2) expression, and proliferation-related genes (CDK-6, PCNA) in SW480 and SW620 colon cancer cell lines, and the differences were found to be statistically significantly. Further, increased levels of catalase in the colon cancer cell lines after ANP-treatment suggested the therapeutic role of ANP. Subsequently, the LDH analysis showed the potential of ANP in inducing colon cancer cell damage. Collectively, the current study clearly shows that ANP is a potential molecule in reducing uncontrolled cancer cell growth. However, additional research using animal models and additional colon cancer cell lines is needed to validate its potential usage in clinical studies.

References

Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., Aggarwal, D., Barwal, T. S., Jain, A., Kaur, G., Sak, K., Varol, M., & Bishayee, A. (2022). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology, 80, 256–275. https://doi.org/10.1016/j.semcancer.2020.05.011

Ahadi, M., Sokolova, A., Brown, I., Chou, A., & Gill, A. J. (2021). The 2019 World Health Organization Classification of appendiceal, colorectal and anal canal tumours: an update and critical assessment. Pathology, 53(4), 454–461. https://doi.org/10.1016/j.pathol.2020.10.010

Boga, I., & Bisgin, A. (2022). Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and FFPE samples in various cancer types of Turkish population. Int. J. Exp. Res. Rev., 29, 89-93. https://doi.org/10.52756/ijerr.2022.v29.010

Cachot, A., Bilous, M., Liu, Y. C., Li, X., Saillard, M., Cenerenti, M., Rockinger, G. A., Wyss, T., Guillaume, P., Schmidt, J., Genolet, R., Ercolano, G., Protti, M. P., Reith, W., Ioannidou, K., de Leval, L., Trapani, J. A., Coukos, G., Harari, A., Speiser, D. E., … Jandus, C. (2021). Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 7(9), eabe3348. https://doi.org/10.1126/sciadv.abe3348

Chakrovorty, A., Bhattacharjee, B., Dey, R., Samadder, A., & Nandi, S. (2021). Graphene: the magic carbon derived biological weapon for human welfare. Int. J. Exp. Res. Rev., 25, 9-17. https://doi.org/10.52756/ijerr.2021.v25.002

Chantawannakul, J., Chatpattanasiri, P., Wattayagorn, V., Kongsema, M., Noikaew, T., & Chumnanpuen, P. (2021). Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line. Molecules (Basel, Switzerland), 26(19), 5767. https://doi.org/10.3390/molecules26195767

Chen, B., Scurrah, C. R., McKinley, E. T., Simmons, A. J., Ramirez-Solano, M. A., Zhu, X., Markham, N. O., Heiser, C. N., Vega, P. N., Rolong, A., Kim, H., Sheng, Q., Drewes, J. L., Zhou, Y., Southard-Smith, A. N., Xu, Y., Ro, J., Jones, A. L., Revetta, F., Berry, L. D., … Lau, K. S. (2021). Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell, 184(26), 6262–6280.e26. https://doi.org/10.1016/j.cell.2021.11.031

Colini Baldeschi, A., Pittaluga, E., Andreola, F., Rossi, S., Cozzolino, M., Nicotera, G., Sferrazza, G., Pierimarchi, P., & Serafino, A. (2018). Atrial Natriuretic Peptide Acts as a Neuroprotective Agent in in Vitro Models of Parkinson's Disease via Up-regulation of the Wnt/β-Catenin Pathway. Frontiers in Aging Neuroscience, 10, 20. https://doi.org/10.3389/fnagi.2018.00020

Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev., 26, 1-15.

https://doi.org/10.52756/ijerr.2021.v26.001

Das, A., Deka, D., Baildya, N., Banerjee, A., Bisgin, A., Adhikari, S., ... & Pathak, S. (2023). BMAP-27 peptide reduces proliferation and increases apoptosis in primary and metastatic colon cancer cell lines. International Journal of Peptide Research and Therapeutics, 29(6), 100. https://doi.org/10.1007/s10989-023-10572-9

Dehghanbanadaki, N., Taghdir, M., & Naderi-Manesh, H. (2021). Investigation of Atrial Natriuretic Peptide as A Competitive Inhibitory Candidate Against Wnt/β-Catenin Signalling: A Molecular Dynamics Approach. International Journal of Peptide Research and Therapeutics, 27(1), 353-363. https://doi.org/10.1007/s10989-020-10085-9

Deng, C., Hu, F., Zhao, Z., Zhou, Y., Liu, Y., Zhang, T., Li, S., Zheng, W., Zhang, W., Wang, T., & Ma, X. (2022). The Establishment of Quantitatively Regulating Expression Cassette with sgRNA Targeting BIRC5 to Elucidate the Synergistic Pathway of Survivin with P-Glycoprotein in Cancer Multi-Drug Resistance. Frontiers in Cell and Developmental Biology, 9, 797005. https://doi.org/10.3389/fcell.2021.797005

Flickinger, J. C., Jr, Singh, J., Yarman, Y., Carlson, R. D., Barton, J. R., Waldman, S. A., & Snook, A. E. (2022). T-Cell Responses to Immunodominant Listeria Epitopes Limit Vaccine-Directed Responses to the Colorectal Cancer Antigen, Guanylyl Cyclase C. Frontiers in Immunology, 13, 855759. https://doi.org/10.3389/fimmu.2022.855759

Hadianamrei, R., Tomeh, M. A., Brown, S., Wang, J., & Zhao, X. (2022). Rationally designed short cationic α-helical peptides with selective anticancer activity. Journal of Colloid and Interface Science, 607(Pt 1), 488–501. https://doi.org/10.1016/j.jcis.2021.08.200

Hadwan, M. H., & Abed, H. N. (2016). Data supporting the spectrophotometric method for the estimation of catalase activity. Data in Brief, 6, 194–199. https://doi.org/10.1016/j.dib.2015.12.012

Hajikazemi, M., Sohrabi, H., Yamchi, A., & Saeedi, M. (2018). The effects of valproic acid on the mRNA expression of Natriuretic Peptide Receptor A and KQT-like subfamily Q-1 in human colon cancer cell lines. Alexandria Journal of Medicine, 54(1), 17-22. https://doi.org/10.1016/j.ajme.2017.04.002

Halder, J., Pradhan, D., Kar, B., Ghosh, G., & Rath, G. (2022). Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 40, 102494. https://doi.org/10.1016/j.nano.2021.102494

Halder, K. (2024). Apoptosis and Autophagy: Therapeutic Implications in Cancer. International Journal of Experimental Research and Review, 37(Special Vol.), 36-60. https://doi.org/10.52756/ijerr.2024.v37spl.004

Kalimuthu, K., Lubin, B. C., Bazylevich, A., Gellerman, G., Shpilberg, O., Luboshits, G., & Firer, M. A. (2018). Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. Journal of Nanobiotechnology, 16(1), 34. https://doi.org/10.1186/s12951-018-0362-1

Karami Fath, M., Babakhaniyan, K., Zokaei, M., Yaghoubian, A., Akbari, S., Khorsandi, M., Soofi, A., Nabi-Afjadi, M., Zalpoor, H., Jalalifar, F., Azargoonjahromi, A., Payandeh, Z., & Alagheband Bahrami, A. (2022). Anti-cancer peptide-based therapeutic strategies in solid tumors. Cellular & Molecular Biology Letters, 27(1), 33. https://doi.org/10.1186/s11658-022-00332-w

Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003

Kopsida, M., Liu, N., Kotti, A., Wang, J., Jensen, L., Jothimani, G., Hildesjo, C., Haapaniemi, S., Zhong, W., Pathak, S., & Sun, X. F. (2024). RhoB expression associated with chemotherapy response and prognosis in colorectal cancer. Cancer Cell International, 24(1), 75. https://doi.org/10.1186/s12935-024-03236-1

Kozlowski, M. R., & Kozlowski, R. E. (2021). Uses of the Novel Small Peptide, KTH-222, in Treating Human Pancreatic Cancer-Evaluation of Different Treatment Regimens using a Mouse Xenograft Model. Biomedical Journal of Scientific & Technical Research, 36(1), 28191-28197. http://dx.doi.org/10.26717/BJSTR.2021.36.005798

Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev., 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015

Kunac, N., Filipović, N., Kostić, S., & Vukojević, K. (2022). The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. Medicina (Kaunas, Lithuania), 58(8), 1135. https://doi.org/10.3390/medicina58081135

Li, Z., Fan, H., Cao, J., Sun, G., Sen Wang, Lv, J., Xuan, Z., Xia, Y., Wang, L., Zhang, D., Xu, H., & Xu, Z. (2021). Natriuretic peptide receptor a promotes gastric malignancy through angiogenesis process. Cell Death & Disease, 12(11), 968. https://doi.org/10.1038/s41419-021-04266-7

Li, Z., Wang, J. W., Wang, W. Z., Zhi, X. F., Zhang, Q., Li, B. W., Wang, L. J., Xie, K. L., Tao, J. Q., Tang, J., Wei, S., Zhu, Y., Xu, H., Zhang, D. C., Yang, L., & Xu, Z. K. (2016). Natriuretic peptide receptor A inhibition suppresses gastric cancer development through reactive oxygen species-mediated G2/M cell cycle arrest and cell death. Free radical biology & Medicine, 99, 593–607. https://doi.org/10.1016/j.freeradbiomed.2016.08.019

Liang, X., Liu, J., Li, M., Lin, F., Zhuang, R., Meng, Q., Ma, X., Xin, Y., Gong, X., He, Z., Han, W., Zhou, X., & Liu, Z. (2023). Intravenously Administered Human Umbilical Cord-Derived Mesenchymal Stem Cell (HucMSC) Improves Cardiac Performance following Infarction via Immune Modulation. Stem Cells International, 2023, 6256115. https://doi.org/10.1155/2023/6256115

Lima, M. S. R., de Lima, V. C. O., Piuvezam, G., de Azevedo, K. P. M., Maciel, B. L. L., & Morais, A. H. A. (2022). Mechanisms of action of anti-inflammatory proteins and peptides with anti-TNF-alpha activity and their effects on the intestinal barrier: A systematic review. PloS One, 17(8), e0270749. https://doi.org/10.1371/journal.pone.0270749

Mao, G., Zheng, S., Li, J., Liu, X., Zhou, Q., Cao, J., Zhang, Q., Zheng, L., Wang, L., & Qi, C. (2022). Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling. Anti-cancer Agents in Medicinal Chemistry, 22(9), 1735–1741. https://doi.org/10.2174/1871520621666210910085733

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int. J. Exp. Res. Rev., 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Mezzasoma, L., Talesa, V. N., Costanzi, E., & Bellezza, I. (2021). Natriuretic peptides regulate prostate cells inflammatory behavior: potential novel anticancer agents for prostate cancer. Biomolecules, 11(6), 794. https://doi.org/10.3390/biom11060794

Mezzasoma, L., Talesa, V. N., Romani, R., & Bellezza, I. (2020). ANP and BNP Exert Anti-Inflammatory Action via NPR-1/cGMP Axis by Interfering with Canonical, Non-Canonical, and Alternative Routes of Inflammasome Activation in Human THP1 Cells. International Journal of Molecular Sciences, 22(1), 24.

https://doi.org/10.3390/ijms22010024

Nath, S., Datta, A., Das, A., & Adhikari, S. (2024). Metal-Based Drugs in Cancer Therapy. International Journal of Experimental Research and Review, 37(Special Vo), 159-173. https://doi.org/10.52756/ijerr.2024.v37spl.014

Oláh, G., Módis, K., Törö, G., Hellmich, M. R., Szczesny, B., & Szabo, C. (2018). Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochemical Pharmacology, 149, 186-204. https://doi.org/10.1016/j.bcp.2017.10.011

Osman, J., Bellamkonda, K., Liu, Q., Andersson, T., & Sjölander, A. (2019). The WNT5A Agonist Foxy5 Reduces the Number of Colonic Cancer Stem Cells in a Xenograft Mouse Model of Human Colonic Cancer. Anticancer Research, 39(4), 1719–1728. https://doi.org/10.21873/anticanres.13278

Palabiyik, O., Tastekin, E., Doganlar, Z. B., Tayfur, P., Dogan, A., & Vardar, S. A. (2019). Alteration in cardiac PI3K/Akt/mTOR and ERK signaling pathways with the use of growth hormone and swimming, and the roles of miR21 and miR133. Biomedical Reports, 0(0), 1–10. https://doi.org/10.3892/br.2018.1179

Rajamäki, K., Taira, A., Katainen, R., Välimäki, N., Kuosmanen, A., Plaketti, R. M., Seppälä, T. T., Ahtiainen, M., Wirta, E. V., Vartiainen, E., Sulo, P., Ravantti, J., Lehtipuro, S., Granberg, K. J., Nykter, M., Tanskanen, T., Ristimäki, A., Koskensalo, S., Renkonen-Sinisalo, L., Lepistö, A., … Aaltonen, L. A. (2021). Genetic and Epigenetic Characteristics of Inflammatory Bowel Disease-Associated Colorectal Cancer. Gastroenterology, 161(2), 592–607. https://doi.org/10.1053/j.gastro.2021.04.042

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Ren, X., Li, Y., Zhou, Y., Hu, W., Yang, C., Jing, Q., Zhou, C., Wang, X., Hu, J., Wang, L., Yang, J., Wang, H., Xu, H., Li, H., Tong, X., Wang, Y., & Du, J. (2021). Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biology, 46, 102122. https://doi.org/10.1016/j.redox.2021.102122

Roy, A., Groten, J., Marigo, V., Tomar, T., & Hilhorst, R. (2021). Identification of Novel Substrates for cGMP Dependent Protein Kinase (PKG) through Kinase Activity Profiling to Understand Its Putative Role in Inherited Retinal Degeneration. International Journal of Molecular Sciences, 22(3), 1180. https://doi.org/10.3390/ijms22031180

Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. Int. J. Exp. Res. Rev., 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001

Solairaja, S., Mohideen, H., & Venkatabalasubramanian, S. (2023). Computational Identification and Validation of Non-Synonymous SNPs in Progesterone Receptor Membrane Complex 1 Linked to Lung Cancer. Int. J. Exp. Res. Rev., 36, 66-75. https://doi.org/10.52756/ijerr.2023.v36.006

Sun, Q., & Li, C. (2022). Research Progress of ANP, NPRA, and Cx43 in Gastric Cancer. Open Journal of Pathology, 12(2), 52-63. https://doi.org/10.4236/ojpathology.2022.122007

Sun, Y., Eichelbaum, E. J., Wang, H., & Vesely, D. L. (2006). Atrial natriuretic peptide and long acting natriuretic peptide inhibit ERK 1/2 in prostate cancer cells. Anticancer Research, 26(6B), 4143–4148

Svrcek, M., Borralho Nunes, P., Villanacci, V., Beaugerie, L., Rogler, G., De Hertogh, G., Tripathi, M., Feakins, R., & H-ECCO group (2018). Clinicopathological and Molecular Specificities of Inflammatory Bowel Disease-Related Colorectal Neoplastic Lesions: The Role of Inflammation. Journal of Crohn's & Colitis, 12(12), 1486–1498. https://doi.org/10.1093/ecco-jcc/jjy132

Takahashi, H., Takeda, T., Nishizawa, Y., Ogino, T., Miyoshi, N., Matsuda, C., Yamamoto, H., Mizushima, T., Doki, Y., & Eguchi, H. (2020). Phase I Study of the Administration of Low-dose Perioperative Human Atrial Natriuretic Peptide in Patients with Resectable Colorectal Cancer. Anticancer Research, 40(9), 5301–5307. https://doi.org/10.21873/anticanres.14536

Tan, G., Huang, C., Chen, J., & Zhi, F. (2020). HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. Journal of Hematology & Oncology, 13(1), 149.

https://doi.org/10.1186/s13045-020-00985-0

Tender, T., Rahangdale, R. R., Balireddy, S., Nampoothiri, M., Sharma, K. K., & Raghu Chandrashekar, H. (2021). Melittin, a honeybee venom derived peptide for the treatment of chemotherapy-induced peripheral neuropathy. Medical Oncology, 38, 1-9. https://doi.org/10.1007/s12032-021-01496-9

Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of Amino Acids, 2012. https://doi.org/10.1155/2012/967347

Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: current applications and future directions. Signal Transduction and Targeted Therapy, 7(1), 48. https://doi.org/10.1038/s41392-022-00904-4

Wei, R., Zhao, Y., Wang, J., Yang, X., Li, S., Wang, Y., Yang, X., Fei, J., Hao, X., Zhao, Y., Gui, L., & Ding, X. (2021). Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. International Journal of Biological Sciences, 17(11), 2703–2717. https://doi.org/10.7150/ijbs.59404

Xu, M., Liu, X., Li, P., Yang, Y., Zhang, W., Zhao, S., Zeng, Y., Zhou, X., Zeng, L. H., & Yang, G. (2022). Modified natriuretic peptides and their potential roles in cancer treatment. Biomedical Journal, 45(1), 118–131. https://doi.org/10.1016/j.bj.2021.06.007

Zhang, D. M., & Lin, Y. F. (2020). Functional modulation of sarcolemmal KATP channels by atrial natriuretic peptide-elicited intracellular signaling in adult rabbit ventricular cardiomyocytes. American Journal of Physiology. Cell Physiology, 319(1), C194–C207. https://doi.org/10.1152/ajpcell.00409.2019

Zhou, H., Huang, T., Xiong, Y., Peng, L., Wang, R., & jun Zhang, G. (2018). The prognostic value of proliferating cell nuclear antigen expression in colorectal cancer: A meta-analysis. Medicine, 97(50), e13752. https://doi.org/10.1097/MD.0000000000013752

Zińczuk, J., Maciejczyk, M., Zaręba, K., Romaniuk, W., Markowski, A., Kędra, B., Zalewska, A., Pryczynicz, A., Matowicka-Karna, J., & Guzińska-Ustymowicz, K. (2019). Antioxidant Barrier, Redox Status, and Oxidative Damage to Biomolecules in Patients with Colorectal Cancer. Can Malondialdehyde and Catalase Be Markers of Colorectal Cancer Advancement? Biomolecules, 9(10), 637. https://doi.org/10.3390/biom9100

Published
2024-04-30
How to Cite
Das, A., Deka, D., Banerjee, A., & Pathak, S. (2024). Evaluating the Anti-proliferative and Apoptotic Role of Atrial Natriuretic Peptide in Colon Cancer Cell Lines. International Journal of Experimental Research and Review, 38, 236-245. https://doi.org/10.52756/ijerr.2024.v38.021
Section
Articles