Combinatorial impact of Chelerythrine and DADS in the restoration of liver physiology during carcinogenic exposure in mice (Mus musculus)

  • Soumosish Paul Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata-700131, West Bengal, India https://orcid.org/0000-0002-7239-0971
  • Gobinda Chandra Sadhukhan Rtd. Director, UGC-HRDC at Jadavpur University, Kolkata – 700032, India
Keywords: Carcinogen, chelerythrine, combination therapy, DADS, Hepatocellular carcinoma

Abstract

Investigation of the efficacy of the combined drugs chelerythrine and DADS in restoring chemically induced hepatocellular carcinoma in Swiss albino mice. 4-6 week-old mice were considered for experimentation. The genotoxic carcinogen para-induced liver cancer--dimethyl-amino azobenzene along with nongenotoxic promoter carcinogen phenobarbital exposure. During the study, animals were co-treated with 100mg/kg body weight DADS and 5mg/kg body weight chelerythrine individually or in combination for 120 days. Bioparametric enzymatic assays of ALT, AST, ALKP, and GGT were performed. The estimation of TBARS, analysis of bone marrow chromosomal abnormalities, sperm head anomalies, and histopathological tissue structure in the co-treated group followed studies. An increase in enzymatic activities of plasma ALT, AST, ALKP, and GGT was observed after carcinogen exposure. Individual treatment of chelerythrine and DADS restored the activities mentioned above to some extent, although combined drugs successfully maintained the enzymatic activities in plasma. Changes in bone marrow chromosomal morphology and sperm head anomalies after carcinogen exposure were prevented in the individual and, most significantly, after combined drug therapy. Histopathological analysis of liver tissue of both male and female mice also demonstrated the preservation of tissue structures in the treated group, most significantly in the combined treatment, even after PB+P-DAB exposure. Chelerythrine and DADS individually protected liver tissue to a certain extent from the tumorigenic toxic effect of PB+P-DAB exposure. The combination of DADS and chelerythrine successfully guarded the tissue from any corrosive, carcinogenic impact and thus instigated further consideration as an effective alternative therapy against chemically induced hepatocarcinoma.

References

Abdalla, E.K., Vauthey, J.N., Ellis, L.M., Pollock, R., Broglio, K.R., Hess, K., & Curley, S.A. (2004). Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann. Surg., 239(6), 818-825. https://doi.org/10.1097/01.sla.0000128305.90650.71

AL-Auqbi, T.F.R., & Al-Khalidy, N.T. (2012). The inhibitory effect of oxadiazole and thiadiazoles in vitro on serum alkaline phosphatase enzyme of pregnant women. Al Mustansiriyah Journal of Harmaceutical Sciences, 11(1), 1-8. https://doi.org/10.32947/ajps.v11i1.224

Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. J. Nutr., 131, 955S–962S. https://doi.org/10.1093/jn/131.3.955S

Andrade, L.J.D.O., D’Oliveira, A., Melo, R.C., Souza, E.C.D., Costa-Silva, C.A., & Parana, R. (2009). Association between Hepatitis C and Hepatocellular Carcinoma. J. Glob. Infect. Dis., 1(1), 33–37. https://doi.org/10.4103/0974-777X.52979

Bhattacharya, S., & Khuda-Bukhsh, A.R. (2004). The protective action of an antioxidant (L-Ascorbic acid) against genotoxicity and cytotoxicity in mice during p-DAB-induced hepatocarcinogenesis. Indian J. Cancer., 41(2), 72-80. https://doi.org/10.4103/0019-509X.12349

Biswas, S.J., & Khuda-Bukhsh, A. (2002). Effect of a homeopathic drug, Chelidonium, in amelioration of p-DAB induced hepatocarcinogenesis in mice. BMC Complement Altern Med., 2(4), 1-12. https://doi.org/10.1186/1472-6882-2-4

Biswas, S.J., & Khuda-Bukhsh, A.R. (2004). Ameliorating effect of an antioxidant (L-ascorbic acid) during p-DAB induced hepatocarcinogenesis in mice: a time course study. Indian J. Cancer, 41, 79-87.

Biswas, S.J., Pathak, S., Bhattacharjee, N., Das, J.K., & Khuda-Bukhsh, A.R. (2005). Efficacy of the potentized homeopathic drug, Carcinosin 200, fed alone and in combination with another drug, Chelidonium 200, in amelioration of p-dimethylamino azobenzene-induced hepatocarcinogenesis in mice. J. Altern. Complement. Med., 11(5), 839-854. https://doi.org/10.1089/acm.2005.11.839

Brown, K.S. (2006). Chemotherapy and other systemic therapies for hepatocellular carcinoma and liver metastases. Semin. Intervent. Radio., 23(1), 99–108. https://doi.org/10.1055/s-2006-939845

Chatterjee, S., Patra, D., Ghosh, P., Banerjee, S., Chakraborty, P., Chowdhury, K. D., Basu, A., & Sadhukhan, G. C. (2021). Combinational Impact of Chelerythrine and s-allyl Cystine on Melanoma Liver Metastasis: an in vivo Analysis. Biosc. Biotech. Res. Comm., 14(1). http://dx.doi.org/10.21786/bbrc/14.1/45

El-Serag, H.B. (2012). Epidemiology of Viral Hepatitis and Hepatocellular Carcinoma. Gastroenterology, 142(6), 1264–1273. https://doi.org/10.1053/j.gastro.2011.12.061

Farhi, D.C., Shikes, R.H., Murari, P.J., & Silverberg, S.G. (1983). Hepatocellular carcinoma in young people.

Feliberti, E.C., & Wagman, L.D. (2006). Radiofrequency ablation of liver metastases from colorectal carcinoma. Cancer Control, 13(1), 48-51. https://doi.org/10.1177/107327480601300107

Fielding, L. (2006). Current Imaging Strategies of Primary and Secondary Neoplasms of the Liver. Semin Intervent Radiol., 23(1), 3–12. https://doi.org/10.1055/s-2006-939836

Gomes, M.A., Priolli, D.G., Tralhão, J.G., & Botelho, M.F. (2013). Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev. Assoc. Med. Bras., 59(5), http://dx.doi.org/10.1016/j.ramb.2013.03.005

Ho, J.C., Zheng, S., Comhair, S.A.A., Farver, C., & Erzurum, S.C. (2001). Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res., 61, 8578-8585.

Hyder, M.A., Hasan, M., & Mohielde, H.A. (2013). Comparative Levels of ALT, AST, ALP, and GGT in Liver-associated Diseases. Eur. J. Exp. Biol., 3(2), 280-284.

Kim, J., & Shin, M. (2014). An integrative model of multi-organ drug-induced toxicity prediction using gene-expression data. BMC Bioinformatics, 15(Suppl 16), S2, 1-9. https://doi.org/10.1186/1471-2105-15-S16-S2

Kitisin, K., Pishvaian, M.J., Johnson, L.B., & Mishra, L. (2007). Liver Stem Cells and Molecular Signaling Pathways in Hepatocellular Carcinoma. Gastrointest Cancer Res., 1(4 Suppl 2), S13-21.

Kmieć, Z. (2001). Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Bio., 161, III-XIII, 1-151. https://doi.org/10.1007/978-3-642-56553-3_1

Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. International Journal of Experimental Research and Review, 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015

Manda, G., Nechifor, M.N., & Neagu, M.T. (2009). Reactive Oxygen Species, Cancer, and Anti-Cancer Therapies. Curr. Chem. Biol., 3, 342-366. https://doi.org/10.2174/187231309787158271

Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. https://doi.org/10.1007/978-981-19-1282-5_61-1

Marszałek, M. (2000). Experimental hepatocarcinogenesis--evaluation of the significance of theoretical models. Contemporary models. Postepy. Hig. Med. Dosw., 54(1), 67-82.

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. International Journal of Experimental Research and Review, 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Moon, C.S., Moon, D., & Kang, S.K. (2022). Aquaporins in Cancer Biology. Front Oncol. 12, 782829. https://doi.org/10.3389/fonc.2022.782829.

Ohnishi, S., Murata, M., Degawa, M., & Kawanishi, S. (2001). Oxidative DNA Damage Induced by an N-Hydroxy Metabolite of Carcinogenic 4-Dimethylaminoazobenzene. Jpn. J. Cancer Res., 92, 23–29. https://doi.org/10.1111/j.1349-7006.2001.tb01043.x

Petruczynik, A., Plech, T., Tuzimski, T., Misiurek, J., Kaproń, B., Misiurek, D., Szultka-Młyńska, M., Buszewski, B., & Waksmundzka-Hajnos, M. (2019). Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins. 2019; 11(10):575. https://doi.org/10.3390/toxins11100575

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. International Journal of Experimental Research and Review, 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. International Journal of Experimental Research and Review, 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001

Singh, A., Bhat, T.K., & Sharma, O.P. (2011). Clinical Biochemistry of Hepatotoxicity. J. Clin. Toxicol., 4, 914–917.

Thorgeirsson, S.S., & Grisham, J.W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet., 31, 339-346. https://doi.org/10.1038/ng0802-339

Vogl, T.J., Gruber, T., Balzer, J.O., Eichler, K., Hammerstingl, R., & Zangos, S. (2009). Repeated transarterial chemoembolization in the treatment of liver metastases of colorectal cancer: prospective study. Radiology, 250(1), 281-289. https://doi.org/10.1148/radiol.2501080295

Wangensteen, K.J., Wang, Y.J., Dou, Z., Wang, A.W., Mosleh-Shirazi, E., Horlbeck, M.A., Gilbert, L.A., Weissman, J.S., Berger, S.L., & Kaestner, K.H. (2018). Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology, 68(2), 663-676. https://doi.org/10.1002/hep.29626.

Wu, C.C., Sheen, L.Y., Chen, H.W., Tsai, S.J., & Lii, C.K. (2001). Effects of organosulfur compounds from garlic oil on the antioxidation system in rat liver and red blood cells. Food Chem. Toxicol., 39, 563–569. https://doi.org/10.1016/S0278-6915(00)00171-X

Xu, X.S., Wan, Y., Song, S.D., Chen, W., Miao, R.C., Zhou, Y., Zhang, L.Q., Qu, K., Liu, S.N., Zhang, Y.L., Dong, Y.F., Liu, C. (2014). Model based on γ-glutamyltransferase and alkaline phosphatase for hepatocellular carcinoma prognosis. World J. Gastroenterol., 20(31), 10944-10952. https://doi.org/10.3748/wjg.v20.i31.10944

Published
2023-10-30
How to Cite
Paul, S., & Sadhukhan, G. (2023). Combinatorial impact of Chelerythrine and DADS in the restoration of liver physiology during carcinogenic exposure in mice (Mus musculus). International Journal of Experimental Research and Review, 34(Special Vo), 57-71. https://doi.org/10.52756/ijerr.2023.v34spl.007