Effect of Orthosiphon stamineus Extract on HIF-1?, Endothelin-1, and VEGFR-2 Gene Expression in NRK-52E Renal Tubular Cells Subjected to Glucotixicity

Authors

  • Devaprasad Markandeyan Department of Neurology, Faculty of Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0002-9548-5324
  • Shiek S.S.J. Ahmed Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0003-3403-4084
  • Palani Perumal Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India https://orcid.org/0000-0002-6774-6478
  • Arulvasu Chinnasamy Dept. of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India https://orcid.org/0000-0002-4613-259X
  • Bhavatarini Govindaraj Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India https://orcid.org/0000-0001-7555-9931
  • Niranjni Sekar Dept. of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India https://orcid.org/0009-0003-8577-7408
  • Sudhan Mookandi Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0001-9117-154X
  • Priyadarshini Shanmugam Department of Microbiology, Faculty of Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0003-4382-562X
  • Janakiraman Velayudam Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0003-2774-9022
  • Deepak Rajasekar Padmanaban Dept. of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India https://orcid.org/0009-0003-8632-3037
  • Perumal Jayaraman Department of Microbiology, Faculty of Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India https://orcid.org/0000-0002-4170-2055

DOI:

https://doi.org/10.52756/ijerr.2024.v37spl.015

Keywords:

Orthosiphon stamineus, HIF-1α, ET-1, VEGFR-2, RHO-kinase, norstaminol_b, orthosiphol_j, orthosiphol m

Abstract

This study aimed to investigate the impact of Orthosiphon stamineus extract on gene expression in NRK-52E cells under conditions of glucotoxicity. Gene expression analysis using RT-PCR was conducted following exposure of cultured NRK-52E cells to glucotoxic conditions and various concentrations of Orthosiphon stamineus extract. The results revealed a dose-dependent decrease in HIF-1?, ET-1 and VEGFR-2 gene expression levels upon treatment with Orthosiphon stamineus extract. The diverse array of phytochemicals found within Orthosiphon demonstrates a significant impact on the biochemical pathways implicated in the pathogenesis of the disease. Additionally, molecular docking studies suggested the potential inhibition of Rho-kinase as a mechanistic explanation for this observed effect. These findings suggest that Orthosiphon stamineus extract may possess renoprotective properties against glucotoxicity-induced cellular damage. This study contributes to understanding potential therapeutic interventions for managing renal complications associated with conditions such as diabetes.

References

Biswas, T., Behera, B. K., & Madhu, N.R. (2023). Technology in the Management of Type 1 and Type 2 Diabetes Mellitus: Recent Status and Future Prospects. 26 pages, Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management. pp. 111–136. Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_6

Chiang, S.K., Chen, S.E., & Chang, L.C. (2018). A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int. J. Mol. Sci., 20, 39. https://doi.org/10.3390/ijms20010039

DeLano, W.L. (2002). Pymol: An open-source molecular graphics tool. CCP4 News. Protein Crystallogr., 40, 82-92.

Feng, X., Wang, S., Sun, Z., Dong, H., Yu, H., Huang, M., & Gao, X. (2021). Ferroptosis Enhanced Diabetic Renal Tubular Injury via HIF-1_/HO-1 Pathway in db/db Mice. Front. Endocrinol.,12, 626390. https://doi.org/10.3389/fendo.2021.626390

Guo, J., Yang, L., & Qiao, Y. (2016). Glycogen synthase kinase3b is required for epithelial-mesenchymal transition and barrier dysfunction in mouse podocytes under high glucose conditions. Mol. Med. Rep., 14, 4091–4098. https://doi.org/10.3892/mmr.2016.5786

Isoe, T., Makino, Y., & Mizumoto, K. (2010. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int., 78, 48–59. https://doi.org/10.1038/ki.2010.99

Lavoz, C., Rodrigues-Diez, R.R., Plaza, A., Carpio, D., Egido, J., Ruiz-Ortega, M., & Mezzano, S. (2020). VEGFR2 Blockade Improves Renal Damage in an Experimental Model of Type 2 Diabetic Nephropathy. Journal of Clinical Medicine, 9(2), 302. https://doi.org/10.3390/jcm9020302

Lin, C.L., Wang, J.Y., & Huang, Y.T. (2006). Wnt/b-catenin signaling modulates survival of high glucose-stressed mesangial cells. J. Am. Soc. Nephrol., 17, 2812–2820. https://doi.org/10.1681/ASN.2005121355

Manna, P., & Sil, P.C. (2012). Arjunolic acid: Beneficial role in type 1 diabetes and its associated organ pathophysiology. Free Radic. Res., 46, 815–830. https://doi.org/10.3109/10715762.2012.683431

Matoba, K. (2009). Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1α. Kidney International, 84(3), 545-554. https://doi.org/10.1038/ki.2013.130

Paeng, J., Chang, J.H., & Lee, S.H. (2014). Enhanced glycogen synthase kinase-3b activity mediates podocyte apoptosis under diabetic conditions. Apoptosis, 19, 1678–1690. https://doi.org/10.1007/s10495-014-1037-5

Patrik, P., & Fredrik, P. (2017). Hypoxia-inducible factor activation in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens, 26(5), 345-350. https://doi.org/10.1097/MNH.0000000000000341

Pawar, S., Pawade, K., Nipate, S., Balap, A., Pimple, B., Wagh, V., Kachave, R., & Gaikwad, A. (2023). Preclinical evaluation of the diabetic wound healing activity of phytoconstituents extracted from Ficus racemosa Linn. leaves. Int. J. Exp. Res. Rev., 32, 365-377. https://doi.org/10.52756/ijerr.2023.v32.032

Peppa-Patrikiou, M., Dracopoulou, M., & Dacou-Voutetakis, C. (1998). Urinary endothelin in adolescents and young adults with insulin-dependent diabetes mellitus: relation to urinary albumin, blood pressure, and other factors, Metabolism, 47, 1408–1412. https://doi.org/10.1016/S0026-0495(98)90314-6

Rose, P.W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A.R., Christie, C.H., Di Costanzo, L., Duarte, J.M., Dutta, S., Feng, Z., Green, R.K., Goodsell, D.S., Hudson, B.P., Kalro, T., Lowe, R., Peisach, E., Randle, C., Rose, A.S., Shao, C., Tao, Y.P., Valasatava, Y., Voigt, M., Westbrook, J.D., Woo, J., Yang, H., Young, J., Zardecki, C., Berman, H.M., & Burley, S.K. (2017). The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 45, D271–D281.

Rosenberger, C., Khamaisi, M., & Abassi, Z. (2008). Adaptation to hypoxia in the diabetic rat kidney. Kidney Int., 73, 34–42. https://doi.org/10.1038/sj.ki.5002567

Shafaei, A., Halim, N.H.A., Zakaria, N., & Ismail, Z. (2017). Analysis of Free Amino Acids in Different Extracts of Orthosiphon stamineus Leaves by High-Performance Liquid Chromatography Combined with Solid-Phase Extraction. Pharmacogn. Mag., 13 (Suppl. S3), 385–391. https://doi.org/10.4103/0973-1296.216337

Sarkar, S., Sadhu, S., Roy, R., Tarafdar, S., Mukherjee, N., Sil, M., Goswami, A., & Madhu, N.R. (2023). Contemporary Drifts in Diabetes Management. Int. J. App. Pharm., 15(2), 1-9.

Song, L., Wang, K., Yin, J., Yang, Y., Li, B., Zhang, D., Wang, H., Wang, W., Zhan, W., & Guo, C. (2022). Traditional Chinese Medicine Fufang-Zhenzhu-Tiaozhi capsule prevents renal injury in diabetic minipigs with coronary heart disease. Chin. Med., 17, 102. https://doi.org/10.1186/s13020-022-00648-x

Sun, H.K., Lee, Y.M., Han, K.H., Kim, H.S., Ahn, S.H., & Han, S.Y. (2012). Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney. Korean J. Intern. Med., 27, 163–170. https://doi.org/10.3904/kjim.2012.27.2.163

Sun, Z., Zheng, Q., Ma, G., Zhang, X., Yuan, J., Wu, H., Liu, H., Yang, J., & Xu, X. (2014). Four new phenolic acids from Clerodendranthus spicatus. Phytochem. Lett., 8, 16–21. https://doi.org/10.1016/j.phytol.2013.12.009

Trott, O., & Olson, A. J. (2010). AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry, 31, 455-461. https://doi.org/10.1002/jcc.21334

Wang, X.T., Gong, Y., Zhou, B., Yang, J.J., Cheng, Y., Zhao, J.G., & Qi, M.U. (2018). Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed Pharm., 97, 1461–1467. https://doi.org/10.1016/j.biopha.2017.11.032

Wenzel, R.R., Czyborra, P., Luscher, T., & Philipp, T. (1999). Endothelin in cardiovascular control: the role of endothelin antagonists, Curr. Hypertens Rep., 1, 79–87. https://doi.org/10.1007/s11906-999-0077-7

Xu, H.L., Wang, X.T., Cheng, Y., Zhao, J.G., Zhou, Y.J., Yang, J.J., & Qi, M.Y. (2018). Ursolicacid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed. Pharm., 105, 915–921. https://doi.org/10.1016/j.biopha.2018.06.055

Published

2024-03-30

How to Cite

Markandeyan, D., Ahmed, S. S., Perumal, P., Chinnasamy, A., Govindaraj, B., Sekar, N., … Jayaraman, P. (2024). Effect of Orthosiphon stamineus Extract on HIF-1?, Endothelin-1, and VEGFR-2 Gene Expression in NRK-52E Renal Tubular Cells Subjected to Glucotixicity. International Journal of Experimental Research and Review, 37(Special Vo), 174–181. https://doi.org/10.52756/ijerr.2024.v37spl.015

Most read articles by the same author(s)