Exploring the Influence of Arbuscular Mycorrhizal Symbology on the Antioxidant Potential of Liverwort Asterella multiflora: A Comprehensive Study on Rhizoid and Thallus Anatomy

  • Mamta Verma Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144402, Punjab, India https://orcid.org/0009-0006-8251-6896
  • Shabnam . Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144402, Punjab, India https://orcid.org/0000-0003-2949-3518
  • Sandeep kotwal Department of Botany, Government Degree College Doda-182202 affiliated to University of Jammu, Jammu and Kashmir, India https://orcid.org/0000-0002-7995-5437
  • Anupam Kumar Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144402, Punjab, India https://orcid.org/0000-0002-6608-3860
Keywords: Asterella multiflora, Antioxidants, Arbuscular Mycorrhiza, Liverworts

Abstract

Arbuscular mycorrhizal (AM) symbiosis is a vital ecological interaction between plants and fungi that enhances nutrient uptake and plant resilience. While extensively studied in vascular plants, AM symbiosis in liverworts remains relatively unexplored. Six populations of Asterella multiflora were collected throughout the year to scan for arbuscular mycorrhizal colonization and enzymatic antioxidant activity. Percent mycorrhizal colonization was measured in smooth as well as tuberculated rhizoids. Anatomical detail of the thallus was also observed. Arbuscules were observed in the cells of the storage zone of the thallus. Enzymatic antioxidant activities, i.e., superoxide dismutase (SOD), guaiacol peroxidase (GPOX), catalase (CAT), ascorbate peroxidase activity (APOX) and glutathione reductase activity (GR) were calculated. Maximum enzyme activity was observed in ascorbate peroxidase, which calculated 1.92-2.09 UA/mg protein, while catalase showed minimum activity of 0.01 UA/mg protein. A positive correlation was observed between enzyme activities and percent mycorrhizal colonization. This study delves into AM symbiosis in liverworts, focusing on Asterella multiflora and investigates the impact of AM colonization on enzymatic antioxidant activities, i.e., superoxide dismutase (SOD), guaiacol peroxidase (GPOX), catalase (CAT) ascorbate peroxidase activity (APOX) and glutathione reductase activity (GR). Antioxidants play a crucial role in stress tolerance and plant health, making them central to understanding the implications of symbiotic relationships.

References

Allen, M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6(2), 291-297. https://doi.org/10.2136/vzj2006.0068

Antoine, S., Hériché, M., Boussageon, R., Noceto, P.A., van Tuinen, D., Wipf, D., Courty, P.E. (2021). A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza, 31, 637–653. https://doi.org/10.1007/s00572-022-01094-1

Bhatta, K., Samal, H., & Mohanty, P. (2023). Isozyme profiling of Antioxidant Enzyme in Macrotyloma uniflorum. Int. J. Exp. Res. Rev., 36, 156-165. https://doi.org/10.52756/ijerr.2023.v36.015a

Bowman, J. L., Araki, T., Arteaga-Vazquez, M. A., Berger, F., Dolan, L., Haseloff, J., & Kohchi, T. (2016). The naming of names: guidelines for gene nomenclature in Marchantia. Plant and Cell Physiology, 57(2), 257-261. https://doi.org/10.1093/pcp/pcv193

Balestrasse, K. B., Gardey, L., Gallego, S. M., & Tomaro, M. L. (2001). Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress. Functional Plant Biology, 28(6), 497-504. https://doi.org/10.1071/PP00158

Brundrett, M.C. (2002). Coevolution of roots and mycorrhizas of land plants. NewPhytologist, 154, 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x

Cairney, J.W.G. (2000). Evolution of mycorrhiza systems. Naturwissenschaften, 87(11), 467- 475. https://doi.org/10.1007/s001140050762

Christenhusz, M. J., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217. https://doi.org/10.11646/phytotaxa.261.3.1

Cottet, A. C., Scervino, J. M., & Messuti, M. I. (2018). An improved staining protocol for the assessment of arbuscular mycorrhizal in bryophytes. Boletín de la Sociedad Argentina de Botánica, 53(2), 1-10.

Delaux, P. M. (2017). Comparative phylog-enomics of symbiotic associations. NewPhytologist, 213(1), 89-94. https://doi.org/10.1111/nph.14161

Fitter, A. H., Heinemeyer, A., & Staddon, P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. The New Phytologist, 147(1), 179-187. https://doi.org/10.1046/j.1469-8137.2000.00680.x

Friese, C. F., & Allen, M. F. (1991). The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia, 83(4), 409-418. https://doi.org/10.1080/00275514.1991.12026030

Glime, J. M. (2020). Stream Physical Factors Affecting Bryophyte Distribution. Volume 4, Chapter 2-1.

Kadam, S. B., Pable, A. A., & Barvkar, V. T. (2020). Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. Functional Plant Biology, 47(10), 880-890. https://doi.org/10.1071/FP20035

Krishnan, R. & Murugan, K. (2013). Polyphenols from Marchantia polymorpha L. a Bryophyta: a potential source as antioxidants. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 2(6), 5182-5198.

https://www.cabidigitallibrary.org/doi/full/10.5555/20143030162

Kumar, P. S., Sucheta, S., Deepa, V. S., Selvamani, P., & Latha, S. (2008). Antioxidant activity in some selected Indian medicinal plants. African Journal of Biotechnology, 7(12). https://doi.org/10.5897/AJB2008.000-5030

Marschner, H., & Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89-102.

https://link.springer.com/article/10.1007/bf00000098

Mitra, D., Djebaili, R., Pellegrini, M., Mahakur, B., Sarker, A., Chaudhary, P., ... & Mohapatra, P. K. D. (2021). Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 44(13), 1993-2028. https://doi.org/10.1080/01904167.2021.1881552

Nicolson, T. H. (1967). Vesicular-arbuscular mycorrhiza—a universal plant symbiosis. Science Progress (1933), 561-581. https://www.jstor.org/stable/43419694

Pirsoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040

Pressel, S., Bidartondo, M.I., Field, K.J., & Duckett, J.G. (2021). Advances in understanding of mycorrhizal-like associations in bryophytes. Bryophyte Diversity and Evolution, 43(1), 284-306. https://doi.org/10.11646/bde.43.1.20

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Rawat, K. K., Verma, P. K., & Alam, A. (2015). Nomenclatural updates in Kashyap’s ‘Liverwort flora of western Himalayas and Panjab Plains’. Plant Science Today, 2(4), 179-183. https://doi.org/10.14719/pst.2015.2.4.146

Redecker, D. (2002). Molecular identification and phylogeny of arbuscular mycorrhizal fungi. In Diversity and Integration in Mycorrhizas: Proceedings of the 3rd International Conference on Mycorrhizas (ICOM3) Adelaide, Australia, 8–13 July 2001, pp. 67-73. Springer Netherlands. https://doi.org/10.1007/978-94-017-1284-27

Rimington, W.R., Pressel, S., Duckett, J.G., Field, K. J., Read, D.J. & Bidartondo, M.I. (2018). Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proceedings of the Royal Society B, 285(1888), p.20181600. https://doi.org/10.1098/rspb.2018.1600

Rousk, K., Degboe, J., Michelsen, A., Bradley, R., & Bellenger, J. P. (2017). Molybdenum and phosphorus limitation of moss‐associated nitrogen fixation in boreal ecosystems. New Phytologist, 214(1), 97-107. https://doi.org/10.1111/nph.14331

Schüßler, A. (2002). Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. In Diversity and Integration in Mycorrhizas: Proceedings of the 3rd International Conference on Mycorrhizas (ICOM3) Adelaide, Australia, 8–13 July 2001. pp. 75-83. Springer Netherlands. https://doi.org/10.1007/978-94-017-1284-28

Sharma, A., Slathia, S., Gupta, D., Handa, N., Choudhary, S.P., Langer, A. & Bhardwaj, R., (2015). Antifungal and antioxidant profile of ethnomedicinally important liverworts (Pellia endivaefolia and Plagiochasma appendiculatum) used by indigenous tribes of district Reasi: North West Himalayas. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(2), 571-579. https://doi.org/10.1007/s40011-014-0373-0

Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6(2), 175-191. https://doi.org/10.4161/psb.6.2.14146

Singh, M., Govindarajan, R., Nath, V., Rawat, A. K. S., & Mehrotra, S. (2006). Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. Journal of Ethnopharmacology, 107(1), 67-72. https://doi.org/10.1016/j.jep.2006.02.007

Smith, S. E., & Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.

Veresoglou, S. D., Johnson, D., Mola, M., Yang, G., &Rillig, M. C. (2022). Evolutionary bet- hedging in arbuscular mycorrhiza-associating angiosperms. New Phytologist, 233, 1984- 1987. https://doi.org/10.1111/nph.17852

Verma, M and Langer, A. (2011). Incidence of arbuscular mycorrhiza in some liverworts of Jammu & Kashmir, India. Phytomorphology, 61, 1-8. https://www.cabidigitallibrary.org/doi/full/10.5555/20113310904

Waterborg, J. H. (2009). The Lowry method for protein quantitation. The protein protocols handbook, pp. 7-10. https://doi.org/10.1007/978-1-59745-198-72

Xiao, B., & Bowker, M. A. (2020). Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Science of the Total Environment, 741, 140425. https://doi.org/10.1016/j.scitotenv.2020.140425

Yadav, S., Srivastava, A., Biswas, S., Basu, S., Singh, S. K., & Mishra, Y. (2022). Seasonal changes in the antioxidative defence system of a liverwort Dumortiera hirsuta. Journal of Plant Growth Regulation, 41(3), 1265-1275. https://doi.org/10.1007/s00344-021-10379-2

Yadav, S., Basu, S., Srivastava, A., Biswas, S., Mondal, R., Jha, V. K., ... & Mishra, Y. (2023). Bryophytes as Modern Model Plants: An Overview of Their Development, Contributions, and Future Prospects. Journal of Plant Growth Regulation, 42, 6933–6950. https://doi.org/10.1007/s00344-023-10986-1

Yang, S., Imran, P., & Ortas, I. (2023). Impact of mycorrhiza on plant nutrition and food security. Journal of Plant Nutrition, 46(13), 3247-3272. https://doi.org/10.1080/01904167.2023.2192780

Yeshi, K., Crayn, D., Ritmejerytė, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313. https://doi.org/10.3390/molecules27010313

Published
2024-03-30
How to Cite
Verma, M., ., S., kotwal, S., & Kumar, A. (2024). Exploring the Influence of Arbuscular Mycorrhizal Symbology on the Antioxidant Potential of Liverwort Asterella multiflora: A Comprehensive Study on Rhizoid and Thallus Anatomy. International Journal of Experimental Research and Review, 37(Special Vo), 109-119. https://doi.org/10.52756/ijerr.2024.v37spl.009