An Improved Power Quality in a Renewable Energy-based Microgrid System Using Adaptive Hybrid UPQC Control Strategy

  • Chilakapati LeninBabu Department of EEE, S V University College of Engineering, Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India https://orcid.org/0000-0001-9749-979X
  • Tenepalli GowriManohar Department of EEE, S V University College of Engineering, Sri Venkateswara University Tirupati-517502, Andhra Pradesh, India https://orcid.org/0000-0003-0441-6022
Keywords: AL_LMS algorithm, Fuzzy Logic, Microgrid, Power Quality, Total Harmonic Distortion, UPQC

Abstract

Due to its ability to integrate renewable energy, improve energy efficiency, and fortify the power system's resilience, microgrids are widely used as regional energy systems. But these advantages do have certain drawbacks in terms of control and Power Quality (PQ). In order to guarantee the proper operation of equipment that is connected and the system's general health, PQ is crucial in microgrids. For microgrids to operate successfully, governing stratagems in concurrence with front-line power electronics devices bid a firm context to knob PQ challenges like Voltage Sag and Swell, Source/Grid current harmonics, Voltage imbalances, Active and Reactive power compensation etc. Multifunctional systems that can integrate clean energy generation and as well as enhance PQ are necessary to meet the demands of complex loads that have the capability of operating in the situation of an unavailable network grid and power electronics devices, which necessitates the need for clean energy. Hence, this paper provides enactment of an adaptive hybrid control strategy based on an Adaptive Leaky Least Mean Square (AL_LMS) algorithm combined with Fuzzy Logic (FL) to the Unified Power Quality Conditioner (UPQC) in a Solar-PV energy based Microgrid system in improving microgrid power quality. The concert of UPQC is assessed by the conventional PI controller and Fuzzy Logic control with MATLAB/SIMULINK software platform, simulation results are conversed with proportionate studies in improving the PQ by minimizing Total Harmonic Distortion (THD), the Voltage Sag & Swell and the result comparison shows the effectiveness of the Fuzzy Logic in coordination with the AL_LMS algorithm resulting improved power quality within the IEEE Power Quality-519 Standards.

References

Abdulkader, R., Ghanimi, H., Dadheech, P., Alharbi, M., El-Shafai, W., Fouda, M., Aly, M., Swaminathan, D., & Sengan, S. (2023). Soft computing in smart grid with decentralized generation and renewable energy storage system planning. Energies, 16(6), 2655. https://doi.org/10.3390/en16062655

Alam, Md. S., Al-Ismail, F. S., Salem, A., & Abido, M. A. (2020). High-level penetration of renewable energy sources into grid utility: Challenges and solutions. IEEE Access, 8, 190277–190299. https://doi.org/10.1109/ACCESS.2020.3031481

Alhafadhi, L., & Teh, J. (2022). Power quality enhancement in stand-alone PV system using Leaky LMS Adaptive algorithm. In N. M. Mahyuddin, N. R. Mat Noor, & H. A. Mat Sakim (Eds.), Springer Singapore, Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications, 829, 449–454. https://doi.org/10.1007/978-981-16-8129-5_69

Bag, A., Subudhi, B., & Ray, P. K. (2020). An Adaptive Variable Leaky Least Mean Square Control Scheme for Grid Integration of a PV system. IEEE Transactions on Sustainable Energy, 11(3), 1508–1515. https://doi.org/10.1109/TSTE.2019.2929551

Baharizadeh, M., Karshenas, H. R., & Golsorkhi, E.M.S. (2021). Control method for improvement of power quality in single interlinking converter hybrid AC‐DC microgrids. IET Smart Grid, 4(4), 414-428. https://doi.org/10.1049/stg2.12014

Bajaj, M., & Singh, A. K. (2020). Grid integrated renewable DG systems: A review of power quality challenges and state‐of‐the‐art mitigation techniques. International Journal of Energy Research, 44(1), 26–69. https://doi.org/10.1002/er.4847

Beniwal, R. K., Saini, M. K., Nayyar, A., Qureshi, B., & Aggarwal, A. (2021). A critical analysis of methodologies for detection and classification of power quality events in smart grid. IEEE Access, 9, 83507–83534. https://doi.org/10.1109/ACCESS.2021.3087016

Bhavani, S. S. N. L., & Shanmukha Rao, L. (2019). Realization of novel multi-feeder UPQC for power quality enhancement using proposed hybrid Fuzzy+PI controller. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 1–8. https://doi.org/10.1109/i-PACT44901.2019.8960156

Chilakapati, L. B., & Manohar, T. G. (2023). Control Strategies for Enhancing Power Quality with Unified Power Quality Conditioner in a Solar-PV Integrated Utility System. International Journal of Experimental Research and Review, 35, 1-15. https://doi.org/10.52756/ijerr.2023.v35spl.001

Devena, N., Gengi, G., Vijayammal, B. K., Reghuraman, K. S., Gunaselvam, D., & Balaraman, J. (2023). Improvement of Power Quality Using Variable Leaky Least Mean Square Controller with Adaptive Shunt Active Filter for Non Linear Loads. 020046. https://doi.org/10.1063/5.0164334

Elmetwaly, A. H., Eldesouky, A. A., & Sallam, A. A. (2020). An adaptive d-facts for power quality enhancement in an isolated microgrid. IEEE Access, 8, 57923–57942. https://doi.org/10.1109/ACCESS.2020.2981444

Eroğlu, H., Cuce, E., Cuce, P. M., Gul, F., & Iskenderoğlu, A. (2021). Harmonic problems in renewable and sustainable energy systems: A comprehensive review. Sustainable Energy Technologies and Assessments, 48, 101566. https://doi.org/10.1016/j.seta.2021.101566

Fazal, S., Enamul H. M., Taufiqul, A.M., Gargoom, A., & Oo, A. M. T. (2023). Grid integration impacts and control strategies for renewable based microgrid. Sustainable Energy Technologies and Assessments, 56, 103069. https://doi.org/10.1016/j.seta.2023.103069

Halkos, G. E., & Gkampoura, E. C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906. https://doi.org/10.3390/en13112906

Hmad, J., Houari, A., Bouzid, A. E. M., Saim, A., & Trabelsi, H. (2023). A review on mode transition strategies between grid-connected and standalone operation of voltage source inverters-based microgrids. Energies, 16(13), 5062. https://doi.org/10.3390/en16135062

Hossain, M. A., Pota, H. R., Hossain, M. J., & Blaabjerg, F. (2019). Evolution of microgrids with converter-interfaced generations: Challenges and opportunities. International Journal of Electrical Power & Energy Systems, 109, 160–186. https://doi.org/10.1016/j.ijepes.2019.01.038

Jadeja, R., Ved, A., Trivedi, T., & Khanduja, G. (2020). Control of power electronic converters in ac microgrid. In N. Mahdavi Tabatabaei, E. Kabalci, & N. Bizon (Eds.), Springer International Publishing. Microgrid Architectures, Control and Protection Methods, pp. 329–355. https://doi.org/10.1007/978-3-030-23723-3_13

Kiehbadroudinezhad, M., Merabet, A., Abo-Khalil, A. G., Salameh, T., & Ghenai, C. (2022). Intelligent and optimized microgrids for future supply power from renewable energy resources: a review. Energies, 15(9), 3359. https://doi.org/10.3390/en15093359

Miret, J., Balestrassi, P. P., Camacho, A., Guzmán, R., & Castilla, M. (2020). Optimal tuning of the control parameters of an inverter‐based microgrid using the methodology of design of experiments. IET Power Electronics, 13(16), 3651–3660. https://doi.org/10.1049/iet-pel.2020.0225

Mlilo, N., Brown, J., & Ahfock, T. (2021). Impact of intermittent renewable energy generation penetration on the power system networks – A review. Technology and Economics of Smart Grids and Sustainable Energy, 6(1), 25. https://doi.org/10.1007/s40866-021-00123-w

Pal, R., & Gupta, S. (2020). Topologies and control strategies implicated in Dynamic Voltage Restorer (DVR) for power quality improvement. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44(2), 581–603. https://doi.org/10.1007/s40998-019-00287-3

Patel, S. K., Arya, S. R., & Maurya, R. (2019). Optimal Step LMS-based Control Algorithm for DSTATCOM in Distribution System. Electric Power Components and Systems, 47(8), 675–691. https://doi.org/10.1080/15325008.2019.1602797

Ray, P., Ray, P. K., & Dash, S. K. (2022). Power Quality Enhancement and Power Flow Analysis of a PV integrated UPQC System in a Distribution Network. IEEE Transactions on Industry Applications, 58(1), 201–211. https://doi.org/10.1109/TIA.2021.3131404

Renduchintala, U. K., Pang, C., Tatikonda, K. M., & Yang, L. (2021). ANFIS‐fuzzy logic based UPQC in interconnected microgrid distribution systems: Modeling, simulation and implementation. The Journal of Engineering, 2021(1), 6–18. https://doi.org/10.1049/tje2.12005

Resener, M., Rebennack, S., Pardalos, P. M., & Haffner, S. (Eds.). (2020). Handbook of optimization in electric power distribution systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-36115-0

Sabin, D., Norwalk, M., Kittredge, K., & Johnston, S. (2022). IEEE Power Quality Standards. 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), 1–6. https://doi.org/10.1109/ICHQP53011.2022.9808543

Saeed, M. H., Fangzong, W., Kalwar, B. A., & Iqbal, S. (2021). A review on microgrids’ challenges & perspectives. IEEE Access, 9, 166502-166517. https://doi.org/10.1109/ACCESS.2021.3135083

Sankaran, C. (2017). Power Quality. CRC press.

Satish, R., Pydi, B., Balamurali, S., Salkuti, S. R., Abdelaziz, A. Y., & Feleke, S. (2023). A Comprehensive Power Quality Mitigation Tool: UPQC. In S. R. Salkuti, P. Ray, & A. R. Singh (Eds.), Springer Nature Singapore. Power Quality in Microgrids: Issues, Challenges and Mitigation Techniques, 1039, 47–68. https://doi.org/10.1007/978-981-99-2066-2_3

Singh, N., Ansari, M. A., Tripathy, M., & Singh, V. P. (2023). Feature extraction and classification techniques for power quality disturbances in distributed generation: A review. IETE Journal of Research, 69(6), 3836–3851. https://doi.org/10.1080/03772063.2021.1920849

Singh, B., & Kumar, R. (2020). A comprehensive survey on enhancement of system performances by using different types of FACTS controllers in power systems with static and realistic load models. Energy Reports, 6, 55-79. https://doi.org/10.1016/j.egyr.2019.08.045

Srilakshmi, K., Pandian, A. N., & Palanivelu, A. (2023). Fuzzy based hybrid controller for UPQC with wind and battery storage systems. International Journal of Electronics, 1–26. https://doi.org/10.1080/00207217.2023.2245193

Sudheer, K., Penagaluru, S., & Prabaharan, N. (2022). Mitigation of voltage disturbances in photovoltaic fed grid system using cascaded soft computing controller. In A. R. Gupta, N. K. Roy, & S. K. Parida (Eds.), Power Electronics and High Voltage in Smart Grid, Vol. 817, pp. 269–281. Springer Nature Singapore. https://doi.org/10.1007/978-981-16-7393-1_22

Suresh, P., & Gowri Manohar, T. (2018). Effective renewable source integration using unified power quality conditioner with power quality enhancement in three phase system. MATECWebofConferences,225, 05014. https://doi.org/10.1051/matecconf/201822505014

Trivedi, R., & Khadem, S. (2022). Implementation of artificial intelligence techniques in microgrid control environment: Current progress and future scopes. Energy and AI, 8, 100147. https://doi.org/10.1016/j.egyai.2022.100147

Venkata A. K. G., & Reddy, M.D. (2023). TLBO-trained ANN-based Shunt Active Power Filter for Mitigation of Current Harmonics. International Journal of Experimental Research and Review, 34(Spl.), 11-21. https://doi.org/10.52756/ijerr.2023.v34spl.002

Vijayalakshmi, S., Shenbagalakshmi, R., Kamalini, C. P., Marimuthu, M., & Venugopal, R. (2022). Power quality issues in smart grid/microgrid. In A. K. Bohre, P. Chaturvedi, M. L. Kolhe, & S. N. Singh (Eds.), Springer Nature Singapore. Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid, pp. 403–442. https://doi.org/10.1007/978-981-19-0979-5_17

Published
2023-12-30
How to Cite
LeninBabu, C., & GowriManohar, T. (2023). An Improved Power Quality in a Renewable Energy-based Microgrid System Using Adaptive Hybrid UPQC Control Strategy. International Journal of Experimental Research and Review, 36, 217-231. https://doi.org/10.52756/ijerr.2023.v36.022
Section
Articles