Metal-Based Drugs in Cancer Therapy

Keywords: Cancer chemotherapy, metallodrugs, platinum drugs, apoptosis, cancer cells

Abstract

Metal-based drugs have emerged as pivotal therapeutics in cancer therapy, enlightening a path toward innovative and effective treatment strategies. Platinum-based therapeutics, notably cisplatin, carboplatin, and oxaliplatin, have transformed the landscape of cancer treatment, setting the stage for the development of next-generation metal-based compounds. Delving into the principles governing the design of metal-based drugs, this article navigates through their intricate coordination chemistry, targeted delivery approaches, and mechanisms of action. Notably, metal-based compounds form covalent bonds with DNA, disrupting vital cellular processes and inducing apoptosis in cancerous tissues. Even though contemporary chemotherapy as well as radiotherapeutic methods have greatly increased patient survival rates, disease recurrence still represents a fatal danger. The probability of metastasis and the drug resistance are increased by the incomplete clearance of neoplastic tissues from the body. This review explores the compelling journey of metal-based compounds, from their historical significance in ancient remedies to their pivotal role in modern oncology, and also discusses the recent advancements and emerging trends that promise to shape the future of metallodrugs. The shining promise of metal-based drugs in cancer remedies holds the potential to revolutionize treatment paradigms, offering hope and resilience in the ongoing battle against one of humanity's most relentless adversaries.

References

Acharya, S., Maji, M., Ruturaj, Purkait, K., Gupta, A., & Mukherjee, A. (2019). Synthesis, structure, stability, and inhibition of tubulin polymerization by RuII–p-cymene complexes of trimethoxyaniline-based Schiff bases. Inorganic Chemistry,58(14), 9213-9224. https://doi.org/10.1021/acs.inorgchem.9b00853.

Adhikari, S., Bhattacharjee, T., Bhattacharjee, S., Daniliuc, C. G., Frontera, A., Lopato, E. M., & Bernhard, S. (2021). Nickel (II) complexes based on dithiolate–polyamine binary ligand systems: crystal structures, hirshfeld surface analysis, theoretical study, and catalytic activity study on photocatalytic hydrogen generation. Dalton Transactions,50(16), 5632-5643. https://doi.org/10.1039/D1DT00352F.

Adhikari, S., Bhattacharjee, T., Butcher, R. J., Porchia, M., De Franco, M., Marzano, C., Gandin, V., &Tisato, F. (2019). Synthesis and characterization of mixed-ligand Zn (II) and Cu (II) complexes including polyamines and dicyano-dithiolate (2-): In vitro cytotoxic activity of Cu (II) compounds. InorganicaChimica Acta,498, 119098. https://doi.org/10.1016/j.ica.2019.119098.

Adhikari, S., Bhattacharjee, T., Das, A., Roy, S., Daniliuc, C. G., Zaręba, J. K., Bauza, A., & Frontera, A. (2020). On the supramolecular properties of neutral, anionic and cationic cadmium complexes harvested from dithiolate–polyamine binary ligand systems. Cryst. Eng. Comm., 22(46), 8023-8035. https://doi.org/10.1039/D0CE01233E

Adhikari, S., Bhattacharjee, T., Gupta, R., Daniliuc, C. G., Montazerozohori, M., Naghiha, R., &Masoudiasl, A. (2020). Coordination framework of cadmium (II), harvested from dithiolate-imidazole binary ligand systems: Crystal structure, Hirshfeld surface analysis, antibacterial, and DNA cleavage potential. Polyhedron,192, 114838. https://doi.org/10.1016/j.poly.2020.114838

Adhikari, S., Bhattacharjee, T., Nath, P., Das, A., Jasinski, J. P., Butcher, R. J., & Maiti, D. (2020). Bimetallic and trimetallic Cd (II) and Hg (II) mixed-ligand complexes with 1, 1-dicyanoethylene-2, 2-dithiolate and polyamines: Synthesis, crystal structure, Hirshfeld surface analysis, and antimicrobial study. InorganicaChimica Acta,512, 119877. https://doi.org/10.1016/j.ica.2020.119877.

Adhikari, S., Kar, D., Fröhlich, R., & Ghosh, K. (2019). Pyridine‐Based Macrocyclic and Open Receptors for Urea. Chemistry Select,4(44), 12825-12831. https://doi.org/10.1002/slct.201902451.

Adhikari, S., Nath, P., Das, A., Datta, A., Baildya, N., Duttaroy, A. K., & Pathak, S. (2024). A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomedicine & Pharmacotherapy, 171, 116211. https://doi.org/10.1016/j.biopha.2024.116211.

Adhikari, S., Sheikh, A. H., Baildya, N., Mahmoudi, G., Choudhury, N. A., Okpareke, O., Sen, T., Verma, A.K., Singh, R.K., Pathak, S., & Kaminsky, W. (2023). Antiproliferative evaluation and supramolecular properties of a Pd (II) complex harvested from benzil bis (pyridyl hydrazone) ligand: Combined experimental and theoretical studies. Inorganic Chemistry Communications, 152, 110646. https://doi.org/10.1016/j.inoche.2023.110646.

Adhikari, S., Sheikh, A. H., Kansız, S., Dege, N., Baildya, N., Mahmoudi, G., Choudhury, N.A., Butcher, R.J., Kaminsky, W., Talledo, S. Lopato, E.M., Bernhard, S., &Kłak, J. (2023). Supramolecular Co (II) complexes based on dithiolate and dicarboxylate ligands: Crystal structures, theoretical studies, magnetic properties, and catalytic activity studies in photocatalytic hydrogen evolution. Journal of Molecular Structure, 1285, 135481.

https://doi.org/10.1016/j.molstruc.2023.135481

Alessio, E., &Messori, L. (2019). NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry. Molecules, 24(10), 1995. https://doi.org/10.3390/molecules24101995.

Beale, P., Judson, I., O'Donnell, A., Trigo, J., Rees, C., Raynaud, F., Turner, A., Simmons, L., &Etterley, L. (2003). A phase I clinical and pharmacological study of cis-diamminedichloro (2-methylpyridine) platinum II (AMD473). British Journal of Cancer, 88(7), 1128-1134. https://doi.org/10.1038/sj.bjc.6600854.

Berkenblit, A., Eder Jr, J. P., Ryan, D. P., Seiden, M. V., Tatsuta, N., Sherman, M. L., Dahl, T.A., Dezube, B.J., & Supko, J. G. (2007). Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clinical Cancer Research, 13(2), 584-590. https://doi.org/10.1158/1078-0432.CCR-06-0964.

Bhattacharjee, P., & Mukherjee, S. (2016). A Review of MicroRNA in Carcinogenesis. Int. J. Exp. Res. Rev., 8, 59-65. Retrieved from https://qtanalytics.in/journals/index.php/IJERR/article/view/1312

Bhattacharjee, T., Adhikari, S. & Butcher, R.J. (2022). Supramolecular Properties Directed by Weak Interactions in a Copper (II) Complex Based on 8-Hydroxy Quinoline-Pyridine Binary Ligand Systems: Crystal Structure and Hirshfeld Surface Analyses. Journal of Chemical Crystallography, 52, 422–433. https://doi.org/10.1007/s10870-021-00903-3

Bhattacharjee, T., Adhikari, S., Bhattacharjee, S., Debnath, S., Das, A., Daniliuc, C. G., Thirumoorthy, K., Malayaperumal, S., Banerjee, A., Pathak, S., & Frontera, A. (2022). Exploring dithiolate-amine binary ligand systems for the supramolecular assemblies of Ni (II) coordination compounds: Crystal structures, theoretical studies, cytotoxicity studies, and molecular docking studies. InorganicaChimica Acta, 543, 121157.

https://doi.org/10.1016/j.ica.2022.121157.

Bhattacharjee, T., Adhikari, S., Datta, A., Daniliuc, C. G., Montazerozohori, M., Naghiha, R., & Hayati, P. (2022). Cadmium (II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential. Polyhedron,211, 115544.

https://doi.org/10.1016/j.poly.2021.115544

Bhattacharjee, T., Adhikari, S., Sheikh, A. H., Mahmoudi, G., Mlowe, S., Akerman, M. P., Choudhury, N.A., Chakraborty, S., Butcher, R.J., Kennedy, A.R., Demir, B.S., Örs, A., &Saygideger, Y. (2022). Syntheses, crystal structures, theoretical studies, and anticancer properties of an unsymmetrical schiff base ligand N-2-(6-methylpyridyl)-2-hydroxy-1-naphthaldimine and its Ni (II) complex. Journal of Molecular Structure, 1269, 133717. https://doi.org/10.1016/j.molstruc.2022.133717.

Boga, I., &Bisgin, A. (2022). Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and FFPE samples in various cancer types of Turkish population. Int. J. Exp. Res. Rev., 29, 89-93. https://doi.org/10.52756/ijerr.2022.v29.010

Boros, E., Dyson, P. J., & Gasser, G. (2020). Classification of metal-based drugs according to their mechanisms of action. Chem.,6(1), 41-60. https://doi.org/10.1016/j.chempr.2019.10.013

Choy, H., Park, C., & Yao, M. (2008). Current status and future prospects for satraplatin, an oral platinum analogue. Clinical Cancer Research, 14(6), 1633-1638. https://doi.org/10.1158/1078-0432.CCR-07-2176.

Cornelison, T. L., & Reed, E. (1993). Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecologic Oncology, 50(2), 147-158. https://doi.org/10.1006/gyno.1993.1184

Cox, T. R. (2021). The matrix in cancer. Nature Reviews Cancer, 21(4), 217-238.

https://doi.org/10.1038/s41568-020-00329-7.

Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev., 26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001

Das, A., Adhikari, S., Deka, D., Baildya, N., Sahare, P., Banerjee, A., Paul, S., Bisgin, A., & Pathak, S. (2023). An updated review on the role of nanoformulated phytochemicals in colorectal cancer. Medicina, 59(4), 685.

https://doi.org/10.3390/medicina59040685.

Das, A., Adhikari, S., Deka, D., Bisgin, A., Paul, S., Balidya, N., Boga, I., Banerjee, A. & Pathak, S. (2023). An Updated Review on Recent Advances in the Usage of Novel Therapeutic Peptides for Breast Cancer Treatment. International Journal of Peptide Research and Therapeutics, 29(2), 32.

https://doi.org/10.1007/s10989-023-10503-8.

Del Olmo, N. S., Maroto-Diaz, M., Quintana, S., Gomez, R., Holota, M., Ionov, M., Bryszewska, M., Carmena, M.J., Ortega, P., & de la Mata, F. J. (2020). Heterofunctional ruthenium (II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. European Journal of Medicinal Chemistry, 207, 112695.https://doi.org/10.1016/j.ejmech.2020.112695.

Dilruba, S., &Kalayda, G. V. (2016). Platinum-based drugs: past, present and future. Cancer Chemotherapy and Pharmacology,77, 1103-1124. https://doi.org/10.1007/s00280-016-2976-z.

Dissanayake, S., Denny, W. A., Gamage, S., & Sarojini, V. (2017). Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. Journal of Controlled Release, 250, 62-76, https://doi.org/10.1016/j.jconrel.2017.02.006.

Gava, B., Zorzet, S. O. N. I. A., Spessotto, P., Cocchietto, M., & Sava, G. (2006). Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate and down-regulation of tumor cell invasion. Journal of Pharmacology and Experimental Therapeutics, 317(1), 284-291.https://doi.org/10.1124/jpet.105.095141

Gavas, S., Quazi, S., &Karpiński, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters,16(1), 173. https://doi.org/10.1186/s11671-021-03628-6.

Ghosh, K., & Adhikari, S. (2006). Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors. Tetrahedron Letters,47(46), 8165-8169.https://doi.org/10.1016/j.tetlet.2006.09.035.

Ghosh, K., & Adhikari, S. (2006). Fluorescence sensing of tartaric acid: a case of excimer emission caused by hydrogen bond-mediated complexation. Tetrahedron Letters,47(21), 3577-3581. https://doi.org/10.1016/j.tetlet.2006.03.044.

Ghosh, K., & Adhikari, S. (2008). A quinoline-based tripodal fluororeceptor for citric acid. Tetrahedron Letters, 49(4), 658-663. https://doi.org/10.1016/j.tetlet.2007.11.139.

Ghosh, K., & Adhikari, S. (2017). Design, synthesis and molecular recognition properties of pyridine-based hetero bis amide receptors. Journal of the Indian Chemical Society, 94(2), 205-212.

Ghosh, K., Adhikari, S., & Fröhlich, R. (2006). Water templated hydrogen-bonded network of pyridine amide appended carbamate in solid state. Journal of Molecular Structure,785(1-3), 63-67. https://doi.org/10.1016/j.molstruc.2005.09.032.

Ghosh, K., Adhikari, S., & Fröhlich, R. (2008). A pyridine-based macrocyclic host for urea and acetone. Tetrahedron Letters,49(34), 5063-5066. https://doi.org/10.1016/j.tetlet.2008.06.030.

Ghosh, K., Adhikari, S., Chattopadhyay, A. P., & Chowdhury, P. R. (2008). Quinoline based receptor in fluorometric discrimination of carboxylic acids. Beilstein Journal of Organic Chemistry,4(1), 52. https://doi.org/10.3762/bjoc.4.52.

Ghosh, K., Adhikari, S., Fröhlich, R., Petsalakis, I. D., & Theodorakopoulos, G. (2011). Experimental and theoretical anion binding studies on coumarin linked thiourea and urea molecules. Journal of Molecular Structure,1004(1-3), 193-203. https://doi.org/10.1016/j.molstruc.2011.08.004.

Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88, 102925.https://doi.org/10.1016/j.bioorg.2019.102925.

Gou, Y., Huang, G., Li, J., Yang, F., & Liang, H. (2021). Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coordination Chemistry Reviews, 441, 213975.

https://doi.org/10.1016/j.ccr.2021.213975.

Graham, M. A., Lockwood, G. F., Greenslade, D., Brienza, S., Bayssas, M., & Gamelin, E. (2000). Clinical pharmacokinetics of oxaliplatin: a critical review. Clinical Cancer Research, 6(4), 1205-1218.

Hensing, T. A., Hanna, N. H., Gillenwater, H. H., Camboni, M. G., Allievi, C., &Socinski, M. A. (2006). Phase II study of BBR 3464 as treatment in patients with sensitive or refractory small cell lung cancer. Anti-Cancer Drugs, 17(6), 697-704. https://doi.org/10.1097/01.cad.0000215054.62942.7f.

Holford, J., Raynaud, F., Murrer, B. A., Grimaldi, K.,

Hartley, J. A., Abrams, M., & Kelland, L. R. (1998). Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro (2-methylpyridine)] platinum (II)(AMD473). Anti-cancer Drug Design, 13(1), 1-18. https://europepmc.org/article/med/9474239.

Iwasaki, Y., Nagata, K., Nakanishi, M., Natuhara, A., Kubota, Y., Ueda, M., Arimoto, T.,& Hara, H. (2005). Double-cycle, high-dose ifosfamide, carboplatin, and etoposide followed by peripheral blood stem-cell transplantation for small cell lung cancer. Chest, 128(4), 2268-2273. https://doi.org/10.1378/chest.128.4.2268.

Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chemical Reviews, 116(5), 3436-3486. https://doi.org/10.1021/acs.chemrev.5b00597.

Kaiser, J. (2017). When less is more, 355, 1144–1146, https://doi.org/10.1126/science.355.6330.1144.

Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer, 7(8), 573-584. https://doi.org/10.1038/nrc2167.

Kelland, L. R. (2000). An update on satraplatin: the first orally available platinum anticancer drug. Expert Opinion on Investigational Drugs, 9(6), 1373-1382. https://doi.org/10.1517/13543784.9.6.1373.

Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003

Kirshner, J. R., He, S., Balasubramanyam, V., Kepros, J., Yang, C. Y., Zhang, M., ... & Bertin, J. (2008). Elesclomol induces cancer cell apoptosis through oxidative stress. Molecular Cancer Therapeutics, 7(8), 2319-2327.

https://doi.org/10.1158/1535-7163.MCT-08-0298.

Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev., 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015

Lazarević, T., Rilak, A., &Bugarčić, Ž. D. (2017). Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European Journal of Medicinal Chemistry, 142, 8-31. https://doi.org/10.1016/j.ejmech.2017.04.007.

Lee, S. Y., Kim, C. Y., & Nam, T. G. (2020). Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Design, Development and Therapy, pp.5375-5392. https://doi.org/10.2147/DDDT.S275007.

Manzotti, C., Pratesi, G., Menta, E., Di Domenico, R., Cavalletti, E., Fiebig, H. H., Kelland, L.R., Farrell, N., Polizzi, D., Supino, R., & Zunino, F. (2000). BBR 3464: a novel triplatinum complex, exhibiting a preclinical profile of antitumor efficacy different from cisplatin. Clinical Cancer Research, 6(7), 2626-2634.

Mathe, G., Kidani, Y., Triana, K., Brienza, S., Ribaud, P., Goldschmidt, E., Ecstein, E., Despax, R., Musset, M., &Misset, J. L. (1986). A phase I trial of trans-1-diaminocyclohexane oxalato-platinum (l-OHP). Biomedicine & Pharmacotherapy= Biomedecine&Pharmacotherapie, 40(10), 372-376. https://europepmc.org/article/med/3580505.

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int.J. Exp. Res. Rev., 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Mellish, K. J., Barnard, C. F., Murrer, B. A., & Kelland, L. R. (1995). DNA‐binding properties of novel cis‐and trans platinum‐based anticancer agents in 2 human ovarian carcinoma cell lines. International Journal of Cancer, 62(6), 717-723. https://doi.org/10.1002/ijc.2910620612.

Miranda, R. R., Sampaio, I., &Zucolotto, V. (2022). Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids and Surfaces B: Biointerfaces, 210, 112254. https://doi.org/10.1016/j.colsurfb.2021.112254.

Molinaro, C., Martoriati, A., Pelinski, L., &Cailliau, K. (2020). Copper complexes as anticancer agents targeting topoisomerases I and II. Cancers, 12(10), 2863. https://doi.org/10.3390/cancers12102863.

Nath, P., Datta, A., & Adhikari, S. (2022). Recent advances of metal-based anticancer agents and their in vivo potential against various types of malignancies. Handbook of animal models and its uses in Cancer Research.

https://doi.org/10.1007/978-981-19-3824-5.

Nath, P., Datta, A., Sen, T., & Adhikari, S. (2024). Emergence of metal-based anticancer therapeutics:

A promising perspective. In Biomarkers in Cancer Detection and Monitoring of Therapeutics, pp. 411-450. Academic Press. https://doi.org/10.1016/B978-0-323-95114-2.00012-1.

Ndagi, U., Mhlongo, N., & Soliman, M. E. (2017). Metal complexes in cancer therapy–an update from drug design perspective. Drug Design, Development and Ttherapy, pp.599-616.

https://doi.org/10.2147/DDDT.S119488.

Norn, S., Permin, H., Kruse, E., & Kruse, P. R. (2008). Mercury--a major agent in the history of medicine and alchemy. Dansk Medicinhistoriskarbog, 36, 21-40. https://europepmc.org/article/med/19831290.

Norouzi, M., Yathindranath, V., Thliveris, J. A., Kopec, B. M., Siahaan, T. J., & Miller, D. W. (2020). Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Scientific Reports, 10(1), 11292. https://doi.org/10.1038/s41598-020-68017-y.

Notaro, A., Frei, A., Rubbiani, R., Jakubaszek, M., Basu, U., Koch, S., Mari, C., Dotou, M., Blacque, O., Gouyon, J., Bedioui, F., Rotthowe, N., Winter, R.F., Goud, B., Ferrari, S., Tharaud, M., Řezáčová, M., Humajová, J., Tomšík, P., & Gasser, G. (2020). Ruthenium (II) complex containing a redox-active semiquinonate ligand as a potential chemotherapeutic agent: from synthesis to in vivo studies. Journal of Medicinal Chemistry,63(10), 5568-5584. https://doi.org/10.1021/acs.jmedchem.0c00431.

O'Neill, C. F., Koberle, B., Masters, J. R. W., & Kelland, L. R. (1999). Gene-specific repair of Pt/DNA lesions and induction of apoptosis by the oral platinum drug JM216 in three human ovarian carcinoma cell lines sensitive and resistant to cisplatin. British Journal of Cancer, 81(8), 1294-1303. https://doi.org/10.1038/sj.bjc.6694381

Oun, R., Moussa, Y. E., &Wheate, N. J. (2018). The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton transactions,47(19), 6645-6653.https://doi.org/10.1039/C8DT00838H.

Park, I. W., Yoo, J., Adhikari, S., Park, J. S., Sessler, J. L., & Lee, C. H. (2012). Calix [4] pyrrole‐based heteroditopic ion‐pair receptor that displays anion‐modulated, cation‐binding behavior. Chemistry–A European Journal, 18(47), 15073-15078. https://doi.org/10.1002/chem.201202777.

Park, I. W., Yoo, J., Kim, B., Adhikari, S., Kim, S. K., Yeon, Y., Haynes, C. J. E., Sutton, J. L., Tong, C. C., Lynch, V. M., Sessler, J. L., Gale, P. A., & Lee, C. H. (2012). Oligoether‐Strapped Calix [4] pyrrole: An Ion‐Pair Receptor Displaying Cation‐Dependent Chloride Anion Transport. Chemistry–A European Journal,18(9), 2514-2523. https://doi.org/10.1002/chem.201103239.

Qin, Q. P., Wang, Z. F., Huang, X. L., Tan, M. X., Shi, B. B., & Liang, H. (2019). High in vitro and in vivo tumor-selective novel ruthenium (II) complexes with 3-(2′-Benzimidazolyl)-7-fluoro-coumarin. ACS Medicinal Chemistry Letters, 10(6), 936-940.https://doi.org/10.1021/acsmedchemlett.9b00098.

Rabik, C. A., & Dolan, M. E. (2007). Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treatment Reviews, 33(1), 9-23. https://doi.org/10.1016/j.ctrv.2006.09.006.

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Rosenberg, B. (1971). Some biological effects of platinum compounds. Platinum Metals Rev., 15(2), 42-51. https://technology.matthey.com/article/15/2/42-51/.

Rosenberg, B., Van Camp, L., &Krigas, T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205(4972), 698-699. https://doi.org/10.1038/205698a0.

Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. Int. J. Exp. Res. Rev., 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001

Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., & Marzano, C. (2014). Advances in copper complexes as anticancer agents. Chemical Reviews, 114(1), 815-862. https://doi.org/10.1021/cr400135x.

Sava, G., Frausin, F., Cocchietto, M., Vita, F. R. A. N. C. E. S. C. A., Podda, E., Spessotto, P., ... & Zabucchi, G. (2004). Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A. European Journal of Cancer, 40(9), 1383-1396. https://doi.org/10.1016/j.ejca.2004.01.034

Sen, S., Won, M., Levine, M. S., Noh, Y., Sedgwick, A. C., Kim, J. S., Sessler, J.L., & Arambula, J. F. (2022). Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chemical Society Reviews, 51(4), 1212-1233. https://doi.org/10.1039/D1CS00417D.

Serment-Guerrero, J., Bravo-Gomez, M. E., Lara-Rivera, E., & Ruiz-Azuara, L. (2017). Genotoxic assessment of the copper chelated compounds Casiopeinas: Clues about their mechanisms of action. Journal of Inorganic Biochemistry, 166, 68-75. https://doi.org/10.1016/j.jinorgbio.2016.11.007.

Sessa, C., Capri, G., Gianni, L., Peccatori, F., Grasselli, G., Bauer, J., Zucchetti, M., Vigano, L., Gatti, A., Minoia, C., Liati, P., Bosch, S.V.V., Bernareggi, A., Camboni, G., &Marsoni, S. (2000). Clinical and pharmacological phase I study with accelerated titration design of a daily times five schedule of BBR3464, a novel cationic triplatinum complex. Annals of Oncology, 11(8), 977-984. https://doi.org/10.1023/A:1008302309734.

Sarma, M. (2016). Cancer therapy with Vinca Alkaloids. Int. J. Exp. Res. Rev., 7, 38-43.

Siddique, S., & Chow, J. C. (2020). Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 10(11), 3824. https://doi.org/10.3390/app10113824.

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. Ca Cancer J. Clin., 73(1), 17-48.

Silva-Platas, C., Guerrero-Beltrán, C. E., Carrancá, M., Castillo, E. C., Bernal-Ramírez, J., Oropeza-Almazán, Y., González, L.N., Rojo, R., Martínez, L.E., Valiente-Banuet, J., & García-Rivas, G. (2016). Antineoplastic copper coordinated complexes (Casiopeinas) uncouple oxidative phosphorylation and induce mitochondrial permeability transition in cardiac mitochondria and cardiomyocytes. Journal of Bioenergetics and Biomembranes, 48, 43-54. https://doi.org/10.1007/s10863-015-9640-x.

Singh, M. K., Sutradhar, S., Paul, B., Adhikari, S., Laskar, F., Butcher, R. J., Acharya, S., & Das, A. (2017). A new cadmium (II) complex with bridging dithiolate ligand: Synthesis, crystal structure and antifungal activity study. Journal of Molecular Structure, 1139, 395-399. https://doi.org/10.1016/j.molstruc.2017.03.073.

Singh, M. K., Sutradhar, S., Paul, B., Adhikari, S., Laskar, F., Acharya, S., Chakraborty, D., Biswas, S.,

Das, A., Roy, S., & Frontera, A. (2018). Mixed-ligand complexes of zinc (II) with 1, 1-dicyanoethylene-2, 2-dithiolate and N-donor ligands: A combined experimental and theoretical study. Journal of Molecular Structure,1164, 334-343. https://doi.org/10.1016/j.molstruc.2018.03.073.

Solairaja, S., Mohideen, H., &Venkatabalasubramanian, S. (2023). Computational Identification and Validation of Non-Synonymous SNPs in Progesterone Receptor Membrane Complex 1 Linked to Lung Cancer. Int. J. Exp. Res. Rev., 36, 66-75. https://doi.org/10.52756/ijerr.2023.v36.006

Soldevila‐Barreda, J. J., Azmanova, M., Pitto‐Barry, A., Cooper, P. A., Shnyder, S. D., & Barry, N. P. (2020). Preclinical Anticancer Activity of an Electron‐Deficient Organoruthenium (II) Complex. Chem Med. Chem., 15(11), 982-987. https://doi.org/10.1002/cmdc.202000096.

Sternberg, C. N., Petrylak, D., Witjes, F., Ferrero, J., Eymard, J., Falcon, S., Chatta, K., Vaughn, D., Berry, W., & Sartor, O. (2007). Satraplatin (S) demonstrates significant clinical benefits for the treatment of patients with HRPC: results of a randomized phase III trial. Journal of Clinical Oncology, 25(18_suppl), 5019-5019. https://doi.org/10.1200/jco.2007.25.18_suppl.5019.

Subarkhan, M. K. M., Ren, L., Xie, B., Chen, C., Wang, Y., & Wang, H. (2019). Novel tetranuclear ruthenium (II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. European Journal of Medicinal Chemistry, 179, 246-256. https://doi.org/10.1016/j.ejmech.2019.06.061.

Ulldemolins, A., Seras-Franzoso, J., Andrade, F., Rafael, D., Abasolo, I., Gener, P., & Schwartz Jr, S. (2021). Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resistance, 4(1), 44. https://doi.org/10.20517/cdr.2020.59.

Vértiz, G., García‐Ortuño, L. E., Bernal, J. P., Bravo‐Gómez, M. E., Lounejeva, E., Huerta, A., & Ruiz‐Azuara, L. (2014). Pharmacokinetics and hematotoxicity of a novel copper‐based anticancer agent: Casiopeina III‐Ea, after a single intravenous dose in rats. Fundamental & Clinical Pharmacology, 28(1), 78-87. https://doi.org/10.1111/j.1472-8206.2012.01075.x.

Wang, X., Zhang, H., & Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance, 2(2), 141. http://dx.doi.org/10.20517/cdr.2019.10.

Wernitznig, D., Kiakos, K., Del Favero, G., Harrer, N., Machat, H., Osswald, A., Jakupec, M.A., Wernitznig, A., Sommergruber, W., & Keppler, B. K. (2019). First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics,11(6), 1044-1048. https://doi.org/10.1039/c9mt00051h.

Wiltshaw, E. (1979). Cisplatin in the treatment of cancer. Platinum Metals Review, 23(3), 90-98.

Xiong, K., Qian, C., Yuan, Y., Wei, L., Liao, X., He, L., ... & Chao, H. (2020). Necroptosis induced by ruthenium (II) complexes as dual catalytic inhibitors of topoisomerase I/II. AngewandteChemie International Edition,59(38), 16631-16637. https://doi.org/10.1002/anie.202006089.

Zhang, Shi. Z., Zada, K., Zhang, S., Meng, C., Yang, Z., and Dong, H. (2020). Upconversion nanoparticle-induced multimode photodynamic therapy based on a metal–organic framework/titanium dioxide nanocomposite. ACS Applied Materials & Interfaces, 12(11), 12600. https://pubs.acs.org/doi/10.1021/acsami.0c01467.

Zheng, P., Zhou, C., Lu, L., Liu, B., & Ding, Y. (2022). Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. Journal of Experimental & Clinical Cancer Research, 41(1), 271. https://doi.org/10.1186/s13046-022-02485-0.

Zhou, J., Kang, Y., Chen, L., Wang, H., Liu, J., Zeng, S., & Yu, L. (2020). The drug-resistance mechanisms of five platinum-based antitumor agents. Frontiers in Pharmacology,11, 343.

https://doi.org/10.3389/fphar.2020.00343.

Zorbas, H., & Keppler, B. K. (2005). Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem., 6(7), 1157-1166. https://doi.org/10.1002/cbic.200400427.

Published
2024-03-30
How to Cite
Nath, S., Datta, A., Das, A., & Adhikari, S. (2024). Metal-Based Drugs in Cancer Therapy. International Journal of Experimental Research and Review, 37(Special Vo), 159-173. https://doi.org/10.52756/ijerr.2024.v37spl.014