Apoptosis and Autophagy: Therapeutic Implications in Cancer

  • Kalpataru Halder Department of Molecular Biology & Biotechnology, Brahmananda Keshab Chandra College, 111/2 B.T Road, Kolkata-108, West Bengal, India https://orcid.org/0009-0007-8832-8092
Keywords: Cell death, Autophagy, Apoptosis, Crosstalk, Cancer, Cellular stress response

Abstract

Despite the advances in the medical field so far, cancer remains a global health priority even now. Considering the drug resistance and the failure of cancer therapies to achieve complete eradication of cancer cells in certain populations, developing molecules that induce programmed cell death or apoptosis has been the focus of cancer research for several decades. Apoptosis evasion is one of the hallmarks of cancer cells, and efforts continue to achieve complete annihilation of cancer cells through selective killing. On the other hand, autophagy, a mode of cell degradation, is considered a double-edged sword. Recent studies show that autophagy also can be manipulated to selectively target cancer cells based on the tumor microenvironment and cellular context. Studies show that autophagy is an evolutionarily conserved process initiated during stress response and has enormous importance in maintaining physiological balance. Most importantly, the dynamic equilibrium between apoptosis and autophagy is crucial in maintaining cellular homeostasis. Although a ‘cell eating’ process, the fate of autophagic cells depends entirely on the nature of stress and the extent of crosstalk between autophagy. This understanding is of immense significance when designing therapeutic interventions targeting apoptosis and autophagy.  Currently, several studies are ongoing to gain insights into the role of autophagy in cancer initiation, invasion, progression, angiogenesis, and metastasis.  This review focuses on the two major cell death mechanisms, apoptosis and autophagy, in the context of cancer, their crosstalk, and the therapeutic interventions targeting both modes of cell death.

References

Abbas, R., & Larisch, S. (2021). Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells, 10(12), 3465. https://doi.org/10.3390/cells10123465

Ahmadi-Dehlaghi, F., Mohammadi, P., Valipour, E., Pournaghi, P., Kiani, S., & Mansouri, K. (2023).

Autophagy: A challengeable paradox in cancer treatment. Cancer Medicine, 12(10), 11542–11569. https://doi.org/10.1002/cam4.5577

Airiau, K., Prouzet-Mauléon, V., Rousseau, B., Pigneux, A., Jeanneteau, M., Giraudon, M., Allou, K., Dubus, P., Belloc, F., & Mahon, F.X. (2015). Synergistic cooperation between ABT-263 and MEK1/2 inhibitor: Effect on apoptosis and proliferation of acute myeloid leukemia cells. Oncotarget, 7(1), 845–859.

Akin, D., Wang, S. K., Habibzadegah-Tari, P., Law, B., Ostrov, D., Li, M., Yin, X.M., Kim, J.-S., Horenstein, N., & Dunn, W. A. (2014). A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy, 10(11), 2021–2035. https://doi.org/10.4161/auto.32229

Alaseem, A. M. (2023). Advancements in MDM2 inhibition: Clinical and pre-clinical investigations of combination therapeutic regimens. Saudi Pharmaceutical Journal : SPJ, 31(10). https://doi.org/10.1016/j.jsps.2023.101790

Albadari, N., & Li, W. (2023). Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules, 28(3), 1376. https://doi.org/10.3390/molecules28031376

Amaravadi, R. K., Schilder, R. J., Martin, L. P., Levin, M., Graham, M. A., Weng, D. E., & Adjei, A. A. (2015). A Phase I Study of the SMAC-Mimetic Birinapant in Adults with Refractory Solid Tumors or Lymphoma. Molecular Cancer Therapeutics, 14(11), 2569–2575. https://doi.org/10.1158/1535-7163.MCT-15-0475

Aquila, S., Santoro, M., Caputo, A., Panno, M. L., Pezzi, V., & De Amicis, F. (2020). The Tumor Suppressor PTEN as Molecular Switch Node Regulating Cell Metabolism and Autophagy: Implications in Immune System and Tumor Microenvironment. Cells, 9(7), 1725. https://doi.org/10.3390/cells9071725

Ariosa, A. R., Lahiri, V., Lei, Y., Yang, Y., Yin, Z., Zhang, Z., & Klionsky, D. J. (2021). A perspective on the role of autophagy in cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(12), 166262. https://doi.org/10.1016/j.bbadis.2021.166262

Ashe, P. C., & Berry, M. D. (2003). Apoptotic signaling cascades. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27(2), 199–214. https://doi.org/10.1016/S0278-5846(03)00016-2

Balic, A., Sørensen, M. D., Trabulo, S. M., Sainz, B., Cioffi, M., Vieira, C. R., Miranda-Lorenzo, I., Hidalgo, M., Kleeff, J., Erkan, M., & Heeschen, C. (2014). Chloroquine Targets Pancreatic Cancer Stem Cells via Inhibition of CXCR4 and Hedgehog Signaling. Molecular Cancer Therapeutics, 13(7), 1758–1771. https://doi.org/10.1158/1535-7163.MCT-13-0948

Bao, X., Liu, X., Li, F., & Li, C.-Y. (2020). Limited MOMP, ATM, and their roles in carcinogenesis and cancer treatment. Cell & Bioscience, 10(1), 81. https://doi.org/10.1186/s13578-020-00442-y

Bleloch, J. S., du Toit, A., Gibhard, L., Kimani, S., Ballim, R. D., Lee, M., Blanckenberg, A., Mapolie, S., Wiesner, L., Loos, B., & Prince, S. (2019). The palladacycle complex AJ-5 induces apoptotic cell death while reducing autophagic flux in rhabdomyosarcoma cells. Cell Death Discovery, 5, 60. https://doi.org/10.1038/s41420-019-0139-9

Boga, I., & Bisgin, A. (2022). Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and FFPE samples in various cancer types of Turkish population. Int. J. Exp. Res. Rev., 29, 89-93. https://doi.org/10.52756/ijerr.2022.v29.010

Bolomsky, A., Vogler, M., Köse, M. C., Heckman, C. A., Ehx, G., Ludwig, H., & Caers, J. (2020). MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. Journal of Hematology & Oncology, 13(1), 173. https://doi.org/10.1186/s13045-020-01007-9

Buccarelli, M., Marconi, M., Pacioni, S., De Pascalis, I., D’Alessandris, Q. G., Martini, M., Ascione, B., Malorni, W., Larocca, L. M., Pallini, R., Ricci-Vitiani, L., & Matarrese, P. (2018). Inhibition of autophagy increases susceptibility of glioblastoma stem cells to temozolomide by igniting ferroptosis. Cell Death & Disease, 9(8), 841. https://doi.org/10.1038/s41419-018-0864-7

Bustos, S. O., Antunes, F., Rangel, M. C., & Chammas, R. (2020). Emerging Autophagy Functions Shape the Tumor Microenvironment and Play a Role in Cancer Progression—Implications for Cancer Therapy. Frontiers in Oncology, 10, 606436. https://doi.org/10.3389/fonc.2020.606436

Campbell, K. J., & Tait, S. W. G. (2018). Targeting BCL-2 regulated apoptosis in cancer. Open Biology, 8(5), 180002. https://doi.org/10.1098/rsob.180002

Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews. Clinical Oncology, 17(7), 395–417. https://doi.org/10.1038/s41571-020-0341-y

Carneiro, B. A., Perets, R., Dowlati, A., LoRusso, P., Yonemori, K., He, L., Munasinghe, W., Noorani, B., Johnson, E. F., & Zugazagoitia, J. (2023). Mirzotamab clezutoclax as monotherapy and in combination with taxane therapy in relapsed/refractory solid tumors: Dose expansion results. Journal of Clinical Oncology, 41(16_suppl), 3027–3027. https://doi.org/10.1200/JCO.2023.41.16_suppl.3027

Carrasco, R. A., Stamm, N. B., Marcusson, E., Sandusky, G., Iversen, P., & Patel, B. K. R. (2011). Antisense inhibition of survivin expression as a cancer therapeutic. Molecular Cancer Therapeutics, 10(2), 221–232. https://doi.org/10.1158/1535-7163.MCT-10-0756

Carter, B. Z., Mak, D. H., Morris, S. J., Borthakur, G., Estey, E., Byrd, A. L., Konopleva, M., Kantarjian, H., & Andreeff, M. (2011). XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34+38- cells in a phase 1/2 study of patients with relapsed/refractory AML. Apoptosis: An International Journal on Programmed Cell Death, 16(1), 67–74. https://doi.org/10.1007/s10495-010-0545-1

Cetraro, P., Plaza-Diaz, J., MacKenzie, A., & Abadía-Molina, F. (2022). A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers, 14(7), Article 7. https://doi.org/10.3390/cancers14071671

Chang, K.-C., Liu, P.-F., Chang, C.-H., Lin, Y.-C., Chen, Y.J., & Shu, C.-W. (2022). The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell & Bioscience, 12(1), 1. https://doi.org/10.1186/s13578-021-00736-9

Chang, N. C., Nguyen, M., Bourdon, J., Risse, P.-A., Martin, J., Danialou, G., Rizzuto, R., Petrof, B. J., & Shore, G. C. (2012). Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Human Molecular Genetics, 21(10), 2277–2287. https://doi.org/10.1093/hmg/dds048

Chen, J., Yuan, J., Zhou, L., Zhu, M., Shi, Z., Song, J., Xu, Q., Yin, G., Lv, Y., Luo, Y., Jia, X., & Feng, L. (2017). Regulation of different components from Ophiopogon japonicus on autophagy in human lung adenocarcinoma A549Cells through PI3K/Akt/mTOR signaling pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 87, 118–126. https://doi.org/10.1016/j.biopha.2016.12.093

Chen, R.-H., Chen, Y.-H., & Huang, T.-Y. (2019). Ubiquitin-mediated regulation of autophagy. Journal of Biomedical Science, 26(1), 80. https://doi.org/10.1186/s12929-019-0569-y

Chesi, M., Mirza, N. N., Garbitt, V. M., Sharik, M. E., Dueck, A. C., Asmann, Y. W., Akhmetzyanova, I., Kosiorek, H. E., Calcinotto, A., Riggs, D. L., Keane, N., Ahmann, G. J., Morrison, K. M., Fonseca, R., Lacy, M. Q., Dingli, D., Kumar, S. K., Ailawadhi, S., Dispenzieri, A., … Bergsagel, P. L. (2016). IAP antagonists induce anti-tumor immunity in multiple myeloma. Nature Medicine, 22(12), 1411–1420. https://doi.org/10.1038/nm.4229

Chiao, M.T., Cheng, W.Y., Yang, Y.C., Shen, C.C., & Ko, J.L. (2013). Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy, 9(10), 1509–1526. https://doi.org/10.4161/auto.25664

Chiu, H.W., Lin, J.H., Chen, Y.A., Ho, S.Y., & Wang, Y.J. (2010). Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy, 6(3), 353–365. https://doi.org/10.4161/auto.6.3.11229

Choi, C., Lee, G. H., Son, A., Yoo, G. S., Yu, J. I., & Park, H. C. (2021). Downregulation of Mcl-1 by Panobinostat Potentiates Proton Beam Therapy in Hepatocellular Carcinoma Cells. Cells, 10(3), 554. https://doi.org/10.3390/cells10030554

Choi, D. S., Blanco, E., Kim, Y.S., Rodriguez, A. A., Zhao, H., Huang, T. H.M., Chen, C.L., Jin, G., Landis, M. D., Burey, L. A., Qian, W., Granados, S. M., Dave, B., Wong, H. H., Ferrari, M., Wong, S. T., & Chang, J. C. (2014). Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cells (Dayton, Ohio), 32(9), 2309–2323. https://doi.org/10.1002/stem.1746

Cournoyer, S., Addioui, A., Belounis, A., Beaunoyer, M., Nyalendo, C., Le Gall, R., Teira, P., Haddad, E., Vassal, G., & Sartelet, H. (2019). GX15–070 (Obatoclax), a Bcl-2 family proteins inhibitor engenders apoptosis and pro-survival autophagy and increases Chemosensitivity in neuroblastoma. BMC Cancer, 19(1), 1018. https://doi.org/10.1186/s12885-019-6195-y

Coward, J., Ambrosini, G., Musi, E., Truman, J.P., Haimovitz-Friedman, A., Allegood, J. C., Wang, E., Merrill, A. H., & Schwartz, G. K. (2009). Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy, 5(2), 184–193. https://doi.org/10.4161/auto.5.2.7361

Dando, I., Donadelli, M., Costanzo, C., Pozza, E. D., D’Alessandro, A., Zolla, L., & Palmieri, M. (2013). Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death & Disease, 4(6), e664. https://doi.org/10.1038/cddis.2013.151

D’Arcy, M. S. (2019). Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International, 43(6), 582–592. https://doi.org/10.1002/cbin.11137

Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev., 26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001

Di Cristofano, F., George, A., Tajiknia, V., Ghandali, M., Wu, L., Zhang, Y., Srinivasan, P., Strandberg, J., Hahn, M., Sanchez Sevilla Uruchurtu, A., Seyhan, A. A., Carneiro, B. A., Zhou, L., Huntington, K. E., & El-Deiry, W. S. (2023). Therapeutic targeting of TRAIL death receptors. Biochemical Society Transactions, 51(1), 57–70. https://doi.org/10.1042/BST20220098

Di Filippo, M., & Bernardi, G. (2009). The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions. PLoS ONE, 4(4), e5010. https://doi.org/10.1371/journal.pone.0005010

Di Malta, C., Cinque, L., & Settembre, C. (2019). Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Frontiers in Cell and Developmental Biology, 7.

https://www.frontiersin.org/articles/10.3389/fcell.2019.00114

Di Nardo, A., Wertz, M. H., Kwiatkowski, E., Tsai, P. T., Leech, J. D., Greene-Colozzi, E., Goto, J., Dilsiz, P., Talos, D. M., Clish, C. B., Kwiatkowski, D. J., & Sahin, M. (2014). Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Human Molecular Genetics, 23(14), 3865–3874. https://doi.org/10.1093/hmg/ddu101

Ding, Y., & Choi, M. E. (2014). Regulation of Autophagy by TGF-β: Emerging Role in Kidney Fibrosis. Seminars in Nephrology, 34(1), 62. https://doi.org/10.1016/j.semnephrol.2013.11.009

Eisenberg-Lerner, A., Bialik, S., Simon, H.-U., & Kimchi, A. (2009). Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death & Differentiation, 16(7), Article 7. https://doi.org/10.1038/cdd.2009.33

Eljack, S., Allard-Vannier, E., Misericordia, Y., Hervé-Aubert, K., Aubrey, N., Chourpa, I., Faggad, A., & David, S. (2022). Combination of Nanovectorized siRNA Directed against Survivin with Doxorubicin for Efficient Anti-Cancer Activity in HER2+ Breast Cancer Cells. Pharmaceutics, 14(11), 2537. https://doi.org/10.3390/pharmaceutics14112537

El-Khattouti, A., Selimovic, D., Haikel, Y., & Hassan, M. (2013). Crosstalk Between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer. Journal of Cell Death, 6, 37–55. https://doi.org/10.4137/JCD.S11034

El-Khoury, V., Pierson, S., Szwarcbart, E., Brons, N. H. C., Roland, O., Cherrier-De Wilde, S., Plawny, L., Van Dyck, E., & Berchem, G. (2014). Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia, 28(8), 1636–1646. https://doi.org/10.1038/leu.2014.19

Fairlie, W. D., Tran, S., & Lee, E. F. (2020). Chapter Four—Crosstalk between apoptosis and autophagy signaling pathways. In J. K. E. Spetz & L. Galluzzi (Eds.), International Review of Cell and Molecular Biology (Vol. 352, pp. 115–158). Academic Press. https://doi.org/10.1016/bs.ircmb.2020.01.003

Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death & Differentiation, 22(3), Article 3. https://doi.org/10.1038/cdd.2014.150

Foggetti, G., Ottaggio, L., Russo, D., Mazzitelli, C., Monti, P., Degan, P., Miele, M., Fronza, G., & Menichini, P. (2019). Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Bioscience Reports, 39(2), BSR20181345. https://doi.org/10.1042/BSR20181345

Frankel, L. B., Wen, J., Lees, M., Høyer-Hansen, M., Farkas, T., Krogh, A., Jäättelä, M., & Lund, A. H. (2011). microRNA-101 is a potent inhibitor of autophagy. The EMBO Journal, 30(22), 4628–4641. https://doi.org/10.1038/emboj.2011.331

Fu, Y., Chang, H., Peng, X., Bai, Q., Yi, L., Zhou, Y., Zhu, J., & Mi, M. (2014). Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PloS One, 9(7), e102535. https://doi.org/10.1371/journal.pone.0102535

Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X.-M., Liu, P., & Li, M. (2018). Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy, 15(2), 295–311. https://doi.org/10.1080/15548627.2018.1517073

Gagliardi, M., & Ashizawa, A. T. (2022). Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics, 14(1), 97. https://doi.org/10.3390/pharmaceutics14010097

Gandesiri, M., Chakilam, S., Ivanovska, J., Benderska, N., Ocker, M., Di Fazio, P., Feoktistova, M., Gali-Muhtasib, H., Rave-Fränk, M., Prante, O., Christiansen, H., Leverkus, M., Hartmann, A., & Schneider-Stock, R. (2012). DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis, 17(12), 1300–1315. https://doi.org/10.1007/s10495-012-0757-7

Gao, P., Bauvy, C., Souquère, S., Tonelli, G., Liu, L., Zhu, Y., Qiao, Z., Bakula, D., Proikas-Cezanne, T., Pierron, G., Codogno, P., Chen, Q., & Mehrpour, M. (2010). The Bcl-2 Homology Domain 3 Mimetic Gossypol Induces Both Beclin 1-dependent and TRAIL death receptors. Biochemical Society Transactions, 51(1), 57–70. https://doi.org/10.1042/BST20220098

Di Filippo, M., & Bernardi, G. (2009). The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions. PLoS ONE, 4(4), e5010. https://doi.org/10.1371/journal.pone.0005010

Di Malta, C., Cinque, L., & Settembre, C. (2019). Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Frontiers in Cell and Developmental Biology, 7.

https://www.frontiersin.org/articles/10.3389/fcell.2019.00114

Di Nardo, A., Wertz, M. H., Kwiatkowski, E., Tsai, P. T., Leech, J. D., Greene-Colozzi, E., Goto, J., Dilsiz, P., Talos, D. M., Clish, C. B., Kwiatkowski, D. J., & Sahin, M. (2014). Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Human Molecular Genetics, 23(14), 3865–3874. https://doi.org/10.1093/hmg/ddu101

Ding, Y., & Choi, M. E. (2014). Regulation of Autophagy by TGF-β: Emerging Role in Kidney Fibrosis. Seminars in Nephrology, 34(1), 62. https://doi.org/10.1016/j.semnephrol.2013.11.009

Eisenberg-Lerner, A., Bialik, S., Simon, H.-U., & Kimchi, A. (2009). Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death & Differentiation, 16(7), Article 7. https://doi.org/10.1038/cdd.2009.33

Eljack, S., Allard-Vannier, E., Misericordia, Y., Hervé-Aubert, K., Aubrey, N., Chourpa, I., Faggad, A., & David, S. (2022). Combination of Nanovectorized siRNA Directed against Survivin with Doxorubicin for Efficient Anti-Cancer Activity in HER2+ Breast Cancer Cells. Pharmaceutics, 14(11), 2537. https://doi.org/10.3390/pharmaceutics14112537

El-Khattouti, A., Selimovic, D., Haikel, Y., & Hassan, M. (2013). Crosstalk Between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer. Journal of Cell Death, 6, 37–55. https://doi.org/10.4137/JCD.S11034

El-Khoury, V., Pierson, S., Szwarcbart, E., Brons, N. H. C., Roland, O., Cherrier-De Wilde, S., Plawny, L., Van Dyck, E., & Berchem, G. (2014). Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia, 28(8), 1636–1646. https://doi.org/10.1038/leu.2014.19

Fairlie, W. D., Tran, S., & Lee, E. F. (2020). Chapter Four—Crosstalk between apoptosis and autophagy signaling pathways. In J. K. E. Spetz & L. Galluzzi (Eds.), International Review of Cell and Molecular Biology (Vol. 352, pp. 115–158). Academic Press. https://doi.org/10.1016/bs.ircmb.2020.01.003

Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death & Differentiation, 22(3), Article 3. https://doi.org/10.1038/cdd.2014.150

Foggetti, G., Ottaggio, L., Russo, D., Mazzitelli, C., Monti, P., Degan, P., Miele, M., Fronza, G., & Menichini, P. (2019). Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Bioscience Reports, 39(2), BSR20181345. https://doi.org/10.1042/BSR20181345

Frankel, L. B., Wen, J., Lees, M., Høyer-Hansen, M., Farkas, T., Krogh, A., Jäättelä, M., & Lund, A. H. (2011). microRNA-101 is a potent inhibitor of autophagy. The EMBO Journal, 30(22), 4628–4641. https://doi.org/10.1038/emboj.2011.331

Fu, Y., Chang, H., Peng, X., Bai, Q., Yi, L., Zhou, Y., Zhu, J., & Mi, M. (2014). Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PloS One, 9(7), e102535. https://doi.org/10.1371/journal.pone.0102535

Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X.-M., Liu, P., & Li, M. (2018). Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy, 15(2), 295–311. https://doi.org/10.1080/15548627.2018.1517073

Gagliardi, M., & Ashizawa, A. T. (2022). Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics, 14(1), 97. https://doi.org/10.3390/pharmaceutics14010097

Gandesiri, M., Chakilam, S., Ivanovska, J., Benderska, N., Ocker, M., Di Fazio, P., Feoktistova, M., Gali-Muhtasib, H., Rave-Fränk, M., Prante, O., Christiansen, H., Leverkus, M., Hartmann, A., & Schneider-Stock, R. (2012). DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis, 17(12), 1300–1315. https://doi.org/10.1007/s10495-012-0757-7

Gao, P., Bauvy, C., Souquère, S., Tonelli, G., Liu, L., Zhu, Y., Qiao, Z., Bakula, D., Proikas-Cezanne, T., Pierron, G., Codogno, P., Chen, Q., & Mehrpour, M. (2010). The Bcl-2 Homology Domain 3 Mimetic Gossypol Induces Both Beclin 1-dependent and TRAIL death receptors. Biochemical Society Transactions, 51(1), 57–70. https://doi.org/10.1042/BST20220098

Di Filippo, M., & Bernardi, G. (2009). The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions. PLoS ONE, 4(4), e5010. https://doi.org/10.1371/journal.pone.0005010

Di Malta, C., Cinque, L., & Settembre, C. (2019). Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Frontiers in Cell and Developmental Biology, 7.

https://www.frontiersin.org/articles/10.3389/fcell.2019.00114

Di Nardo, A., Wertz, M. H., Kwiatkowski, E., Tsai, P. T., Leech, J. D., Greene-Colozzi, E., Goto, J., Dilsiz, P., Talos, D. M., Clish, C. B., Kwiatkowski, D. J., & Sahin, M. (2014). Neuronal Tsc1/2 complex controls autophagy through AMPK-dependent regulation of ULK1. Human Molecular Genetics, 23(14), 3865–3874. https://doi.org/10.1093/hmg/ddu101

Ding, Y., & Choi, M. E. (2014). Regulation of Autophagy by TGF-β: Emerging Role in Kidney Fibrosis. Seminars in Nephrology, 34(1), 62. https://doi.org/10.1016/j.semnephrol.2013.11.009

Eisenberg-Lerner, A., Bialik, S., Simon, H.-U., & Kimchi, A. (2009). Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death & Differentiation, 16(7), Article 7. https://doi.org/10.1038/cdd.2009.33

Eljack, S., Allard-Vannier, E., Misericordia, Y., Hervé-Aubert, K., Aubrey, N., Chourpa, I., Faggad, A., & David, S. (2022). Combination of Nanovectorized siRNA Directed against Survivin with Doxorubicin for Efficient Anti-Cancer Activity in HER2+ Breast Cancer Cells. Pharmaceutics, 14(11), 2537. https://doi.org/10.3390/pharmaceutics14112537

El-Khattouti, A., Selimovic, D., Haikel, Y., & Hassan, M. (2013). Crosstalk Between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer. Journal of Cell Death, 6, 37–55. https://doi.org/10.4137/JCD.S11034

El-Khoury, V., Pierson, S., Szwarcbart, E., Brons, N. H. C., Roland, O., Cherrier-De Wilde, S., Plawny, L., Van Dyck, E., & Berchem, G. (2014). Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia. Leukemia, 28(8), 1636–1646. https://doi.org/10.1038/leu.2014.19

Fairlie, W. D., Tran, S., & Lee, E. F. (2020). Chapter Four—Crosstalk between apoptosis and autophagy signaling pathways. In J. K. E. Spetz & L. Galluzzi (Eds.), International Review of Cell and Molecular Biology (Vol. 352, pp. 115–158). Academic Press. https://doi.org/10.1016/bs.ircmb.2020.01.003

Filomeni, G., De Zio, D., & Cecconi, F. (2015). Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death & Differentiation, 22(3), Article 3. https://doi.org/10.1038/cdd.2014.150

Foggetti, G., Ottaggio, L., Russo, D., Mazzitelli, C., Monti, P., Degan, P., Miele, M., Fronza, G., & Menichini, P. (2019). Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival. Bioscience Reports, 39(2), BSR20181345. https://doi.org/10.1042/BSR20181345

Frankel, L. B., Wen, J., Lees, M., Høyer-Hansen, M., Farkas, T., Krogh, A., Jäättelä, M., & Lund, A. H. (2011). microRNA-101 is a potent inhibitor of autophagy. The EMBO Journal, 30(22), 4628–4641. https://doi.org/10.1038/emboj.2011.331

Fu, Y., Chang, H., Peng, X., Bai, Q., Yi, L., Zhou, Y., Zhu, J., & Mi, M. (2014). Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PloS One, 9(7), e102535. https://doi.org/10.1371/journal.pone.0102535

Fu, Y., Hong, L., Xu, J., Zhong, G., Gu, Q., Gu, Q., Guan, Y., Zheng, X., Dai, Q., Luo, X., Liu, C., Huang, Z., Yin, X.-M., Liu, P., & Li, M. (2018). Discovery of a small molecule targeting autophagy via ATG4B inhibition and cell death of colorectal cancer cells in vitro and in vivo. Autophagy, 15(2), 295–311. https://doi.org/10.1080/15548627.2018.1517073

Gagliardi, M., & Ashizawa, A. T. (2022). Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics, 14(1), 97. https://doi.org/10.3390/pharmaceutics14010097

Gandesiri, M., Chakilam, S., Ivanovska, J., Benderska, N., Ocker, M., Di Fazio, P., Feoktistova, M., Gali-Muhtasib, H., Rave-Fränk, M., Prante, O., Christiansen, H., Leverkus, M., Hartmann, A., & Schneider-Stock, R. (2012). DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis, 17(12), 1300–1315. https://doi.org/10.1007/s10495-012-0757-7

Gao, P., Bauvy, C., Souquère, S., Tonelli, G., Liu, L., Zhu, Y., Qiao, Z., Bakula, D., Proikas-Cezanne, T., Pierron, G., Codogno, P., Chen, Q., & Mehrpour, M. (2010). The Bcl-2 Homology Domain 3 Mimetic Gossypol Induces Both Beclin 1-dependent and Beclin 1-independent Cytoprotective Autophagy in Cancer Cells. The Journal of Biological Chemistry, 285(33), 25570–25581. https://doi.org/10.1074/jbc.M110.118125

Gholizadeh, M. A., Shamsabadi, F. T., Yamchi, A., Golalipour, M., Jhingan, G. D., & Shahbazi, M. (2020). Identification of hub genes associated with RNAi-induced silencing of XIAP through targeted proteomics approach in MCF7 cells. Cell & Bioscience, 10(1), 78. https://doi.org/10.1186/s13578-020-00437-9

Green, D. R., & Llambi, F. (2015). Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 7(12), a006080. https://doi.org/10.1101/cshperspect.a006080

Grisan, F., Iannucci, L. F., Surdo, N. C., Gerbino, A., Zanin, S., Di Benedetto, G., Pozzan, T., & Lefkimmiatis, K. (2021). PKA compartmentalization links cAMP signaling and autophagy. Cell Death & Differentiation, 28(8), Article 8. https://doi.org/10.1038/s41418-021-00761-8

Grossi, V., Lucarelli, G., Forte, G., Peserico, A., Matrone, A., Germani, A., Rutigliano, M., Stella, A., Bagnulo, R., Loconte, D., Galleggiante, V., Sanguedolce, F., Cagiano, S., Bufo, P., Trabucco, S., Maiorano, E., Ditonno, P., Battaglia, M., Resta, N., & Simone, C. (2015). Loss of STK11 expression is an early event in prostate carcinogenesis and predicts therapeutic response to targeted therapy against MAPK/p38. Autophagy, 11(11), 2102–2113. https://doi.org/10.1080/15548627.2015.1091910

Gu, Y., Zhao, X., & Song, X. (2020). Ex vivo pulsed dendritic cell vaccination against cancer. Acta Pharmacologica Sinica, 41(7), Article 7. https://doi.org/10.1038/s41401-020-0415-5

Guo, K., Searfoss, G., Krolikowski, D., Pagnoni, M., Franks, C., Clark, K., Yu, K. T., Jaye, M., & Ivashchenko, Y. (2001). Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death & Differentiation, 8(4), Article 4. https://doi.org/10.1038/sj.cdd.4400810

Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

Herbst, R. S., & Frankel, S. R. (2004). Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide): A rational therapeutic to enhance apoptosis in therapy of lung cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10(12 Pt 2), 4245s–4248s. https://doi.org/10.1158/1078-0432.CCR-040018

Hounsell, C., & Fan, Y. (2021). The Duality of Caspases in Cancer, as Told through the Fly. International Journal of Molecular Sciences, 22(16), 8927. https://doi.org/10.3390/ijms22168927

Hu, J., Cao, J., Topatana, W., Juengpanich, S., Li, S., Zhang, B., Shen, J., Cai, L., Cai, X., & Chen, M. (2021). Targeting mutant p53 for cancer therapy: Direct and indirect strategies. Journal of Hematology & Oncology, 14(1), 157. https://doi.org/10.1186/s13045-021-01169-0

Hu, J., Pan, D., Li, G., Chen, K., & Hu, X. (2022). Regulation of programmed cell death by Brd4. Cell Death & Disease, 13(12), 1059. https://doi.org/10.1038/s41419-022-05505-1

Hung, A. C., Tsai, C.-H., Hou, M.-F., Chang, W.-L., Wang, C.H., Lee, Y.-C., Ko, A., Hu, S. C.-S., Chang, F.R., Hsieh, P.W., & Yuan, S.S. F. (2016). The synthetic β-nitrostyrene derivative CYT-Rx20 induces breast cancer cell death and autophagy via ROS-mediated MEK/ERK pathway. Cancer Letters, 371(2), 251–261. https://doi.org/10.1016/j.canlet.2015.11.035

Huo, R., Wang, L., Liu, P., Zhao, Y., Zhang, C., Bai, B., Liu, X., Shi, C., Wei, S., & Zhang, H. (2016). Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death. Molecular Medicine Reports, 14(4), 3013. https://doi.org/10.3892/mmr.2016.5648

Iurlaro, R., & Muñoz-Pinedo, C. (2016). Cell death induced by endoplasmic reticulum stress. The FEBS Journal, 283(14), 2640–2652. https://doi.org/10.1111/febs.13598

Jang, J. E., Eom, J.I., Jeung, H.-K., Cheong, J.W., Lee, J. Y., Kim, J. S., & Min, Y. H. (2017). AMPK-ULK1-Mediated Autophagy Confers Resistance to BET Inhibitor JQ1 in Acute Myeloid Leukemia Stem Cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 23(11), 2781–2794. https://doi.org/10.1158/1078-0432.CCR-16-1903

Jinesh, G. G., & Kamat, A. M. (2017). The Blebbishield Emergency Program Overrides Chromosomal Instability and Phagocytosis Checkpoints in Cancer Stem Cells. Cancer Research, 77(22), 6144–6156. https://doi.org/10.1158/0008-5472.CAN-17-0522

Kale, J., Osterlund, E. J., & Andrews, D. W. (2018). BCL-2 family proteins: Changing partners in the dance towards death. Cell Death & Differentiation, 25(1), Article 1. https://doi.org/10.1038/cdd.2017.186

Kang, H., Lee, H., Kim, D., Kim, B., Kang, J., Kim, H. Y., Youn, H., & Youn, B. (2022). Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines, 10(6), 1308. https://doi.org/10.3390/biomedicines10061308

Kang, M. H., & Reynolds, C. P. (2009). Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 15(4), 1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144

Kargbo, R. B. (2023a). Potent and Selective BCL-XL Inhibitors and PROTAC Compounds as Potential Cancer Treatment and Immunotherapy. ACS Medicinal Chemistry Letters, 14(6), 702–704. https://doi.org/10.1021/acsmedchemlett.3c00181

Kargbo, R. B. (2023b). Redefining Cancer Therapy: Toward BCL-XL/BCL-2 Dual Inhibitors with Diminished Platelet Toxicity. ACS Medicinal Chemistry Letters, 14(9), 1156–1158. https://doi.org/10.1021/acsmedchemlett.3c00357

Kari, S., Subramanian, K., Altomonte, I. A., Murugesan, A., Yli-Harja, O., & Kandhavelu, M. (2022). Programmed cell death detection methods: A systematic review and a categorical comparison. Apoptosis, 27(7), 482–508. https://doi.org/10.1007/s10495-022-01735-y

Kashyap, D., Garg, V. K., & Goel, N. (2021). Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Advances in Protein Chemistry and Structural Biology, 125, 73–120. https://doi.org/10.1016/bs.apcsb.2021.01.003

Ke, D., Yu, Y., Li, C., Han, J., & Xu, J. (2022). Phosphorylation of BCL2 at the Ser70 site mediates RANKL-induced osteoclast precursor autophagy and osteoclastogenesis. Molecular Medicine, 28(1), 22. https://doi.org/10.1186/s10020-022-00449-w

Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003

Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. Journal of Molecular Biology, 434(4), 167378. https://doi.org/10.1016/j.jmb.2021.167378

Kist, M., & Vucic, D. (2021). Cell death pathways: Intricate connections and disease implications. The EMBO Journal, 40(5), e106700. https://doi.org/10.15252/embj.2020106700

Klose, J., Trefz, S., Wagner, T., Steffen, L., Preißendörfer Charrier, A., Radhakrishnan, P., Volz, C., Schmidt, T., Ulrich, A., Dieter, S. M., Ball, C., Glimm, H., & Schneider, M. (2019). Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE, 14(2), e0211916. https://doi.org/10.1371/journal.pone.0211916

Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev., 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015

Kumar, D., Shankar, S., & Srivastava, R. K. (2014). Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Letters, 343(2), 179–189. https://doi.org/10.1016/j.canlet.2013.10.003

Lane, D. P., Cheok, C. F., & Lain, S. (2010). P53-based Cancer Therapy. Cold Spring Harbor Perspectives in Biology, 2(9), a001222. https://doi.org/10.1101/cshperspect.a001222

Lee, Y.K., & Lee, J.A. (2016). Role of the mammalian ATG8/LC3 family in autophagy: Differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Reports, 49(8), 424–430. https://doi.org/10.5483/BMBRep.2016.49.8.081

Levine, A. J. (2022). Targeting the P53 Protein for Cancer Therapies: The Translational Impact of P53 Research. Cancer Research, 82(3), 362–364. https://doi.org/10.1158/0008-5472.CAN-21-2709

Li, J.Y., Tian, T., Han, B., Yang, T., Guo, Y.X., Wu, J.Y., Chen, Y.S., Yang, Q., & Xie, R.J. (2023). Suberoylanilide hydroxamic acid upregulates reticulophagy receptor expression and promotes cell death in hepatocellular carcinoma cells. World Journal of Gastroenterology, 29(34), 5038–5053. https://doi.org/10.3748/wjg.v29.i34.5038

Li, W., Luo, L.X., Zhou, Q.Q., Gong, H.B., Fu, Y.Y., Yan, C.Y., Li, E., Sun, J., Luo, Z., Ding, Z.J., Zhang, Q.Y., Mu, H.L., Cao, Y.F., Ouyang, S.H., Kurihara, H., Li, Y.F., Sun, W.Y., Li, M., & He, R.R. (2022). Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biology, 55, 102421. https://doi.org/10.1016/j.redox.2022.102421

Li, Z.N., & Luo, Y. (2022). HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review). Oncology Reports, 49(1), 6. https://doi.org/10.3892/or.2022.8443

Kang, H., Lee, H., Kim, D., Kim, B., Kang, J., Kim, H. Y., Youn, H., & Youn, B. (2022). Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines, 10(6), 1308. https://doi.org/10.3390/biomedicines10061308

Kang, M. H., & Reynolds, C. P. (2009). Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 15(4), 1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144

Kargbo, R. B. (2023a). Potent and Selective BCL-XL Inhibitors and PROTAC Compounds as Potential Cancer Treatment and Immunotherapy. ACS Medicinal Chemistry Letters, 14(6), 702–704. https://doi.org/10.1021/acsmedchemlett.3c00181

Kargbo, R. B. (2023b). Redefining Cancer Therapy: Toward BCL-XL/BCL-2 Dual Inhibitors with Diminished Platelet Toxicity. ACS Medicinal Chemistry Letters, 14(9), 1156–1158. https://doi.org/10.1021/acsmedchemlett.3c00357

Kari, S., Subramanian, K., Altomonte, I. A., Murugesan, A., Yli-Harja, O., & Kandhavelu, M. (2022). Programmed cell death detection methods: A systematic review and a categorical comparison. Apoptosis, 27(7), 482–508. https://doi.org/10.1007/s10495-022-01735-y

Kashyap, D., Garg, V. K., & Goel, N. (2021). Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Advances in Protein Chemistry and Structural Biology, 125, 73–120. https://doi.org/10.1016/bs.apcsb.2021.01.003

Ke, D., Yu, Y., Li, C., Han, J., & Xu, J. (2022). Phosphorylation of BCL2 at the Ser70 site mediates RANKL-induced osteoclast precursor autophagy and osteoclastogenesis. Molecular Medicine, 28(1), 22. https://doi.org/10.1186/s10020-022-00449-w

Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003

Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. Journal of Molecular Biology, 434(4), 167378. https://doi.org/10.1016/j.jmb.2021.167378

Kist, M., & Vucic, D. (2021). Cell death pathways: Intricate connections and disease implications. The EMBO Journal, 40(5), e106700. https://doi.org/10.15252/embj.2020106700

Klose, J., Trefz, S., Wagner, T., Steffen, L., Preißendörfer Charrier, A., Radhakrishnan, P., Volz, C., Schmidt, T., Ulrich, A., Dieter, S. M., Ball, C., Glimm, H., & Schneider, M. (2019). Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS ONE, 14(2), e0211916. https://doi.org/10.1371/journal.pone.0211916

Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev., 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015

Kumar, D., Shankar, S., & Srivastava, R. K. (2014). Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Letters, 343(2), 179–189. https://doi.org/10.1016/j.canlet.2013.10.003

Lane, D. P., Cheok, C. F., & Lain, S. (2010). P53-based Cancer Therapy. Cold Spring Harbor Perspectives in Biology, 2(9), a001222. https://doi.org/10.1101/cshperspect.a001222

Lee, Y.K., & Lee, J.A. (2016). Role of the mammalian ATG8/LC3 family in autophagy: Differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Reports, 49(8), 424–430. https://doi.org/10.5483/BMBRep.2016.49.8.081

Levine, A. J. (2022). Targeting the P53 Protein for Cancer Therapies: The Translational Impact of P53 Research. Cancer Research, 82(3), 362–364. https://doi.org/10.1158/0008-5472.CAN-21-2709

Li, J.Y., Tian, T., Han, B., Yang, T., Guo, Y.X., Wu, J.Y., Chen, Y.S., Yang, Q., & Xie, R.J. (2023). Suberoylanilide hydroxamic acid upregulates reticulophagy receptor expression and promotes cell death in hepatocellular carcinoma cells. World Journal of Gastroenterology, 29(34), 5038–5053. https://doi.org/10.3748/wjg.v29.i34.5038

Li, W., Luo, L.X., Zhou, Q.Q., Gong, H.B., Fu, Y.Y., Yan, C.Y., Li, E., Sun, J., Luo, Z., Ding, Z.J., Zhang, Q.Y., Mu, H.L., Cao, Y.F., Ouyang, S.H., Kurihara, H., Li, Y.F., Sun, W.Y., Li, M., & He, R.R. (2022). Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biology, 55, 102421. https://doi.org/10.1016/j.redox.2022.102421

Li, Z.N., & Luo, Y. (2022). HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review). Oncology Reports, 49(1), 6. https://doi.org/10.3892/or.2022.8443

Liang, D. H., Choi, D. S., Ensor, J. E., Kaipparettu, B. A., Bass, B. L., & Chang, J. C. (2016). The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Letters, 376(2), 249–258. https://doi.org/10.1016/j.canlet.2016.04.002

Lin, H.H., Hsu, H.L., & Yeh, N.H. (2007). Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. Journal of Biomedical Science, 14(5), 681–694. https://doi.org/10.1007/s11373-007-9165-3

Lin, Y.-T., Wang, H.C., Hsu, Y.C., Cho, C.L., Yang, M.Y., & Chien, C.Y. (2017). Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. International Journal of Molecular Sciences, 18(7), 1343. https://doi.org/10.3390/ijms18071343

Lindenboim, L., Zohar, H., Worman, H. J., & Stein, R. (2020). The nuclear envelope: Target and mediator of the apoptotic process. Cell Death Discovery, 6(1), Article 1. https://doi.org/10.1038/s41420-020-0256-5

Liu, J., Hong, M., Li, Y., Chen, D., Wu, Y., & Hu, Y. (2022). Programmed Cell Death Tunes Tumor Immunity. Frontiers in Immunology, 13, 847345. https://doi.org/10.3389/fimmu.2022.847345

Liu, S., Yao, S., Yang, H., Liu, S., & Wang, Y. (2023). Autophagy: Regulator of cell death. Cell Death & Disease, 14(10), 648. https://doi.org/10.1038/s41419-023-06154-8

Lőrincz, P., & Juhász, G. (2020). Autophagosome-Lysosome Fusion. Journal of Molecular Biology, 432(8), 2462–2482. https://doi.org/10.1016/j.jmb.2019.10.028

Ma, Q., Long, S., Gan, Z., Tettamanti, G., Li, K., & Tian, L. (2022). Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells, 11(3), 441. https://doi.org/10.3390/cells11030441

Ma, Y., Jin, Z., Yu, K., & Liu, Q. (2019). NVP-BEZ235-induced autophagy as a potential therapeutic approach for multiple myeloma. American Journal of Translational Research, 11(1), 87–105.

Mao, X., Zhang, X., Zheng, X., Chen, Y., Xuan, Z., & Huang, P. (2021). Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. Journal of Natural Medicines, 75(3), 590–601. https://doi.org/10.1007/s11418-021-01505-1

Marquez, R. T., & Xu, L. (2012). Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. American Journal of Cancer Research, 2(2), 214.

Matuz-Mares, D., González-Andrade, M., Araiza-Villanueva, M. G., Vilchis-Landeros, M. M., & Vázquez-Meza, H. (2022). Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants, 11(5), 801. https://doi.org/10.3390/antiox11050801

Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K.-J., Coppes, R. P., Engedal, N., Mari, M., & Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455. https://doi.org/10.1080/15548627.2018.1474314

McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X.-H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D., & Amaravadi, R. K. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences, 109(21), 8253–8258. https://doi.org/10.1073/pnas.1118193109

McKnight, N. C., & Zhenyu, Y. (2013). Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. Current Pathobiology Reports, 1(4), 231–238. https://doi.org/10.1007/s40139-013-0028-5

Medivir. (2020). A Phase 1/2 Multicenter, Single-Arm, Open-Label, Dose-Escalation Study of Birinapant in Combination With Pembrolizumab (KEYTRUDA®) in Patients With Relapsed or Refractory Solid Tumors (Clinical Trial Registration NCT02587962). clinicaltrials.gov. https://clinicaltrials.gov/study/NCT02587962

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int. J. Exp. Res. Rev., 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Meng, C.Y., Zhao, Z.Q., Bai, R., Zhao, W., Wang, Y.X., Sun, L., Sun, C., Feng, W., & Guo, S.B. (2020). MicroRNA-22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma. Molecular Medicine Reports, 22(5), 3911–3921. https://doi.org/10.3892/mmr.2020.11447

Meng, W. B., Liu, J. P., Wang, X. W., & E, L. H. (2015). Effect of Bcl-2-siRNA on proliferation and apoptosis of pediatric acute B lymphoblastic leukemia (A-Liang, D. H., Choi, D. S., Ensor, J. E., Kaipparettu, B. A., Bass, B. L., & Chang, J. C. (2016). The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Letters, 376(2), 249–258. https://doi.org/10.1016/j.canlet.2016.04.002

Lin, H.H., Hsu, H.L., & Yeh, N.H. (2007). Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. Journal of Biomedical Science, 14(5), 681–694. https://doi.org/10.1007/s11373-007-9165-3

Lin, Y.-T., Wang, H.C., Hsu, Y.C., Cho, C.L., Yang, M.Y., & Chien, C.Y. (2017). Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. International Journal of Molecular Sciences, 18(7), 1343. https://doi.org/10.3390/ijms18071343

Lindenboim, L., Zohar, H., Worman, H. J., & Stein, R. (2020). The nuclear envelope: Target and mediator of the apoptotic process. Cell Death Discovery, 6(1), Article 1. https://doi.org/10.1038/s41420-020-0256-5

Liu, J., Hong, M., Li, Y., Chen, D., Wu, Y., & Hu, Y. (2022). Programmed Cell Death Tunes Tumor Immunity. Frontiers in Immunology, 13, 847345. https://doi.org/10.3389/fimmu.2022.847345

Liu, S., Yao, S., Yang, H., Liu, S., & Wang, Y. (2023). Autophagy: Regulator of cell death. Cell Death & Disease, 14(10), 648. https://doi.org/10.1038/s41419-023-06154-8

Lőrincz, P., & Juhász, G. (2020). Autophagosome-Lysosome Fusion. Journal of Molecular Biology, 432(8), 2462–2482. https://doi.org/10.1016/j.jmb.2019.10.028

Ma, Q., Long, S., Gan, Z., Tettamanti, G., Li, K., & Tian, L. (2022). Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells, 11(3), 441. https://doi.org/10.3390/cells11030441

Ma, Y., Jin, Z., Yu, K., & Liu, Q. (2019). NVP-BEZ235-induced autophagy as a potential therapeutic approach for multiple myeloma. American Journal of Translational Research, 11(1), 87–105.

Mao, X., Zhang, X., Zheng, X., Chen, Y., Xuan, Z., & Huang, P. (2021). Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. Journal of Natural Medicines, 75(3), 590–601. https://doi.org/10.1007/s11418-021-01505-1

Marquez, R. T., & Xu, L. (2012). Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. American Journal of Cancer Research, 2(2), 214.

Matuz-Mares, D., González-Andrade, M., Araiza-Villanueva, M. G., Vilchis-Landeros, M. M., & Vázquez-Meza, H. (2022). Mitochondrial Calcium: Effects of Its Imbalance in Disease. Antioxidants, 11(5), 801. https://doi.org/10.3390/antiox11050801

Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K.-J., Coppes, R. P., Engedal, N., Mari, M., & Reggiori, F. (2018). Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy, 14(8), 1435–1455. https://doi.org/10.1080/15548627.2018.1474314

McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X.-H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D., & Amaravadi, R. K. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences, 109(21), 8253–8258. https://doi.org/10.1073/pnas.1118193109

McKnight, N. C., & Zhenyu, Y. (2013). Beclin 1, an Essential Component and Master Regulator of PI3K-III in Health and Disease. Current Pathobiology Reports, 1(4), 231–238. https://doi.org/10.1007/s40139-013-0028-5

Medivir. (2020). A Phase 1/2 Multicenter, Single-Arm, Open-Label, Dose-Escalation Study of Birinapant in Combination With Pembrolizumab (KEYTRUDA®) in Patients With Relapsed or Refractory Solid Tumors (Clinical Trial Registration NCT02587962). clinicaltrials.gov. https://clinicaltrials.gov/study/NCT02587962

Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. Int. J. Exp. Res. Rev., 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001

Meng, C.Y., Zhao, Z.Q., Bai, R., Zhao, W., Wang, Y.X., Sun, L., Sun, C., Feng, W., & Guo, S.B. (2020). MicroRNA-22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma. Molecular Medicine Reports, 22(5), 3911–3921. https://doi.org/10.3892/mmr.2020.11447

Meng, W. B., Liu, J. P., Wang, X. W., & E, L. H. (2015). Effect of Bcl-2-siRNA on proliferation and apoptosis of pediatric acute B lymphoblastic leukemia (A-BLL) cells. Genetics and Molecular Research: GMR, 14(4), 12427–12436. https://doi.org/10.4238/2015.October.16.9

Menon, M. B., & Dhamija, S. (2018). Beclin 1 Phosphorylation – at the Center of Autophagy Regulation. Frontiers in Cell and Developmental Biology,6. https://www.frontiersin.org/articles/10.3389/fcell.2018.00137

Montinaro, A., & Walczak, H. (2023). Harnessing TRAIL-induced cell death for cancer therapy: A long walk with thrilling discoveries. Cell Death & Differentiation, 30(2), Article 2. https://doi.org/10.1038/s41418-022-01059-z

Morgan, C. W., Julien, O., Unger, E. K., Shah, N. M., & Wells, J. A. (2014). Turning ON Caspases with Genetics and Small Molecules. Methods in Enzymology, 544, 179. https://doi.org/10.1016/B978-0-12-417158-9.00008-X

Mrakovcic, M., Bohner, L., Hanisch, M., & Fröhlich, L. F. (2018). Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. International Journal of Molecular Sciences, 19(12), 3952. https://doi.org/10.3390/ijms19123952

Mrakovcic, M., & Fröhlich, L. F. (2018). P53-Mediated Molecular Control of Autophagy in Tumor Cells. Biomolecules, 8(2), 14. https://doi.org/10.3390/biom8020014

Mulcahy Levy, J. M., & Thorburn, A. (2020). Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death and Differentiation, 27(3), 843–857. https://doi.org/10.1038/s41418-019-0474-7

Nakagawa-Saito, Y., Mitobe, Y., Togashi, K., Suzuki, S., Sugai, A., Kitanaka, C., & Okada, M. (2023). Givinostat Inhibition of Sp1-dependent MGMT Expression Sensitizes Glioma Stem Cells to Temozolomide. Anticancer Research, 43(3), 1131–1138. https://doi.org/10.21873/anticanres.16258

National Cancer Institute (NCI). (2024). Birinapant and Intensity Modulated Re-Irradiation Therapy (IMRRT) for Locoregionally Recurrent Head and Neck Squamous Cell Carcinoma (HNSCC) (Clinical Trial Registration NCT03803774). clinicaltrials.gov. https://clinicaltrials.gov/study/NCT03803774

Nelson, D. M., Joseph, B., Hillion, J., Segal, J., Karp, J. E., & Resar, L. M. S. (2011). Flavopiridol induces BCL-2 expression and represses oncogenic transcription factors in leukemic blasts from adults with refractory acute myeloid leukemia. Leukemia & Lymphoma, 52(10), 1999–2006. https://doi.org/10.3109/10428194.2011.591012

Nicastri, M. C., Rebecca, V. W., Amaravadi, R. K., & Winkler, J. D. (2018). Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Molecular & Cellular Oncology, 5(1). https://doi.org/10.1080/23723556.2017.1395504

Noonan, A. M., Bunch, K. P., Chen, J.Q., Herrmann, M. A., Lee, J., Kohn, E. C., O’Sullivan, C. C., Jordan, E., Houston, N., Takebe, N., Kinders, R. J., Cao, L., Peer, C. J., Figg, W. D., & Annunziata, C. M. (2016). Pharmacodynamic markers and clinical results from the Phase II Study of the SMAC-Mimetic Birinapant in Women with Relapsed Platinum-Resistant or Refractory Epithelial Ovarian Cancer. Cancer, 122(4), 588–597. https://doi.org/10.1002/cncr.29783

Odle, R. I., & Cook, S. J. (2020). Macroautophagy is repressed during mitosis—Seeing is believing. Autophagy, 16(4), 775–776. https://doi.org/10.1080/15548627.2020.1725405

Ozyerli-Goknar, E., & Bagci-Onder, T. (2021). Epigenetic Deregulation of Apoptosis in Cancers. Cancers, 13(13), 3210. https://doi.org/10.3390/cancers13133210

Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J.-A., Outzen, H., Øvervatn, A., Bjørkøy, G., & Johansen, T. (2007). P62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. Journal of Biological Chemistry, 282(33), 24131–24145. https://doi.org/10.1074/jbc.M702824200

Park, D. B. (2015). Metformin Promotes Apoptosis but Suppresses Autophagy in Glucose-Deprived H4IIE Hepatocellular Carcinoma Cells. Diabetes & Metabolism Journal, 39(6), 518–527. https://doi.org/10.4093/dmj.2015.39.6.518

Park, D., Magis, A. T., Li, R., Owonikoko, T. K., Sica, G. L., Sun, S.-Y., Ramalingam, S. S., Khuri, F. R., Curran, W. J., & Deng, X. (2013). Novel Small-Molecule Inhibitors of Bcl-XL to Treat Lung Cancer. Cancer Research, 73(17), 5485–5496. https://doi.org/10.1158/0008-5472.CAN-12-2272

Pasquier, B. (2015). SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy, 11(4), 725–726. https://doi.org/10.1080/15548627.2015.1033601

Patergnani, S., Danese, A., Bouhamida, E., Aguiari, G., Previati, M., Pinton, P., & Giorgi, C. (2020). Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. International Journal of Molecular Sciences, 21(21), 8323. https://doi.org/10.3390/ijms21218323

Pathak, S., Singh, V., Kumar, N., & Jayandharan, G. R. (2023). Inducible caspase 9-mediated suicide gene therapy using AAV6 vectors in a murine model of breast cancer. Molecular Therapy Methods & Clinical Development, 31. https://doi.org/10.1016/j.omtm.2023.101166

Peker, N., & Gozuacik, D. (2020). Autophagy as a Cellular Stress Response Mechanism in the Nervous System. Journal of Molecular Biology, 432(8), 2560–2588. https://doi.org/10.1016/j.jmb.2020.01.017

Pesce, E., Sondo, E., Ferrera, L., Tomati, V., Caci, E., Scudieri, P., Musante, I., Renda, M., Baatallah, N., Servel, N., Hinzpeter, A., di Bernardo, D., Pedemonte, N., & Galietta, L. J. V. (2018). The Autophagy Inhibitor Spautin-1 Antagonizes Rescue of Mutant CFTR Through an Autophagy-Independent and USP13-Mediated Mechanism. Frontiers in Pharmacology, 9. https://www.frontiersin.org/articles/10.3389/fphar.2018.01464

Petherick, K. J., Conway, O. J. L., Mpamhanga, C., Osborne, S. A., Kamal, A., Saxty, B., & Ganley, I. G. (2015). Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (mTOR)-dependent Autophagy. The Journal of Biological Chemistry, 290(18), 11376–11383. https://doi.org/10.1074/jbc.C114.627778

Pfeffer, C. M., & Singh, A. T. K. (2018). Apoptosis: A Target for Anticancer Therapy. International Journal of Molecular Sciences, 19(2), 448. https://doi.org/10.3390/ijms19020448

Ploumaki, I., Triantafyllou, E., Koumprentziotis, I.A., Karampinos, K., Drougkas, K., Karavolias, I., Trontzas, I., & Kotteas, E. A. (2023). Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clinical and Translational Oncology, 25(6), 1554–1578. https://doi.org/10.1007/s12094-022-03070-9

Raghavan, V., Agrahari, M., & Gowda, D. K. (2019). Virtual screening of p53 mutants reveals Y220S as an additional rescue drug target for PhiKan083 with higher binding characteristics. Computational Biology and Chemistry, 80, 398–408. https://doi.org/10.1016/j.compbiolchem.2019.05.005

Rahman, M. A., Park, M. N., Rahman, M. H., Rashid, M. M., Islam, R., Uddin, M. J., Hannan, M. A., & Kim, B. (2022). p53 Modulation of Autophagy Signaling in Cancer Therapies: Perspectives Mechanism and Therapeutic Targets. Frontiers in Cell and Developmental Biology, 10. https://www.frontiersin.org/articles/10.3389/fcell.2022.761080

Rami, N., Kulkarni, B., Chibber, S., Jhala, D., Parmar, N., & Trivedi, K. (2023). In vitro antioxidant and anticancer potential of Annona squamosa L. Extracts against breast cancer. Int. J. Exp. Res. Rev., 30, 264-275. https://doi.org/10.52756/ijerr.2023.v30.024

Rashid, H.O., Yadav, R. K., Kim, H.R., & Chae, H.J. (2015). ER stress: Autophagy induction, inhibition and selection. Autophagy, 11(11), 1956–1977. https://doi.org/10.1080/15548627.2015.1091141

Ries, S., & Korn, W. M. (2002). ONYX-015: Mechanisms of action and clinical potential of a replication-selective adenovirus. British Journal of Cancer, 86(1), 5–11. https://doi.org/10.1038/sj.bjc.6600006

Rohn, J. L., & Noteborn, M. H. M. (2004). The viral death effector Apoptin reveals tumor-specific processes. Apoptosis: An International Journal on Programmed Cell Death, 9(3), 315–322. https://doi.org/10.1023/b:appt.0000025808.48885.9c

Ryabaya, O. O., Inshakov, A. N., Egorova, A. V., Emelyanova, M. A., Nasedkina, T. V., Zasedatelev, A. S., Khochenkov, D. A., & Stepanova, E. V. (2017). Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anti-Cancer Drugs, 28(3), 307–315. https://doi.org/10.1097/CAD.0000000000000463

Saha, A., & Yadav, R. (2023). Study on segmentation and prediction of lung cancer based on machine learning approaches. Int. J. Exp. Res. Rev., 30, 1-14. https://doi.org/10.52756/ijerr.2023.v30.001

Saliba, A. N., John, A. J., & Kaufmann, S. H. (2021). Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. Cancer Drug Resistance, 4(1), 125–142. https://doi.org/10.20517/cdr.2020.95

Sanchez, M., Lin, Y., Yang, C.C., McQuary, P., Campos, A. R., Blanc, P. A., & Wolf, D. A. (2019). Cross Talk between eIF2α and eEF2 Phosphorylation Pathways Optimizes Translational Arrest in Response to Oxidative Stress. iScience, 20, 466. https://doi.org/10.1016/j.isci.2019.09.031

Sa-nongdej, W., Chongthammakun, S., & Songthaveesin, C. (2021). Nutrient starvation induces apoptosis and autophagy in C6 glioma stem-like cells. Heliyon, 7(2), e06352. https://doi.org/10.1016/j.heliyon.2021.e06352

Saraste, A., & Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research, 45(3), 528–537. https://doi.org/10.1016/s0008-6363(99)00384-3

Sarnik, J., Popławski, T., & Tokarz, P. (2021). BET Proteins as Attractive Targets for Cancer Therapeutics. International Journal of Molecular Sciences, 22(20), 11102. https://doi.org/10.3390/ijms222011102

Schimmer, A. D., & Dalili, S. (2005). Targeting the IAP family of caspase inhibitors as an emerging therapeutic strategy. Hematology. American Society of Hematology. Education Program, 215–219. https://doi.org/10.1182/asheducation-2005.1.215

Schmukler, E., Kloog, Y., & Pinkas-Kramarski, R. (2014). Ras and autophagy in cancer development and therapy. Oncotarget, 5(3), 577–586.

Schwulst, S. J., Muenzer, J. T., Peck-Palmer, O. M., Chang, K. C., Davis, C. G., McDonough, J. S., Osborne, D. F., Walton, A. H., Unsinger, J., McDunn, J. E., & Hotchkiss, R. S. (2008). Bim siRNA decreases lymphocyte apoptosis and improves survival in sepsis. Shock (Augusta, Ga.), 30(2), 127–134. https://doi.org/10.1097/shk.0b013e318162cf17

Segawa, K., & Nagata, S. (2015). An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends in Cell Biology, 25(11), 639–650. https://doi.org/10.1016/j.tcb.2015.08.003

Shalini, S., Dorstyn, L., Dawar, S., & Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death & Differentiation, 22(4), Article 4. https://doi.org/10.1038/cdd.2014.216

Shen, H., & Maki, C. G. (2011). Pharmacologic activation of p53 by small-molecule MDM2 antagonists. Current Pharmaceutical Design, 17(6), 560–568.

Shinoura, N., Muramatsu, Y., Yoshida, Y., Asai, A., Kirino, T., & Hamada, H. (2000). Adenovirus-mediated transfer of caspase-3 with Fas ligand induces drastic apoptosis in U-373MG glioma cells. Experimental Cell Research, 256(2), 423–433. https://doi.org/10.1006/excr.2000.4848

Shu, F., Xiao, H., Li, Q.N., Ren, X.S., Liu, Z.G., Hu, B.W., Wang, H.S., Wang, H., & Jiang, G.M. (2023). Epigenetic and post-translational modifications in autophagy: Biological functions and therapeutic targets. Signal Transduction and Targeted Therapy, 8(1), Article 1. https://doi.org/10.1038/s41392-022-01300-8

Singh, B. N., Kumar, D., Shankar, S., & Srivastava, R. K. (2012). Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochemical Pharmacology, 84(9), 1154–1163. https://doi.org/10.1016/j.bcp.2012.08.007

Singh, P., Ravanan, P., & Talwar, P. (2016). Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy. Frontiers in Molecular Neuroscience, 9.

https://www.frontiersin.org/articles/10.3389/fnmol.2016.00046

Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nature Reviews. Molecular Cell Biology, 20(3), 175–193. https://doi.org/10.1038/s41580-018-0089-8

Solvik, T. A., Nguyen, T. A., Lin, Y.-H. T., Marsh, T., Huang, E. J., Wiita, A. P., Debnath, J., & Leidal, A. M. (2021). Autophagy cargo receptors are secreted via extracellular vesicles and particles in response to endolysosomal inhibition or impaired autophagosome maturation (p. 2021.08.12.456045). bioRxiv. https://doi.org/10.1101/2021.08.12.456045

Song, J. H., Kandasamy, K., & Kraft, A. S. (2008). ABT-737 Induces Expression of the Death Receptor 5 and Sensitizes Human Cancer Cells to TRAIL-induced Apoptosis. The Journal of Biological Chemistry, 283(36), 25003–25013. https://doi.org/10.1074/jbc.M802511200

Soria, J.C., Smit, E., Khayat, D., Besse, B., Yang, X., Hsu, C.-P., Reese, D., Wiezorek, J., & Blackhall, F. (2010). Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(9), 1527–1533. https://doi.org/10.1200/JCO.2009.25.4847

Sun, H., Liu, L., Lu, J., Qiu, S., Yang, C.-Y., Yi, H., & Wang, S. (2010). Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorganic & Medicinal Chemistry Letters, 20(10), 3043–3046.

Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K., & Mizushima, N. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes & Development, 25(8), 795–800. https://doi.org/10.1101/gad.2016211

Tamm, I., Trepel, M., Cardó-Vila, M., Sun, Y., Welsh, K., Cabezas, E., Swatterthwait, A., Arap, W., Reed, J. C., & Pasqualini, R. (2003). Peptides Targeting Caspase Inhibitors*. Journal of Biological Chemistry, 278(16), 14401–14405. https://doi.org/10.1074/jbc.M210133200

Tang, F., Hu, P., Yang, Z., Xue, C., Gong, J., Sun, S., Shi, L., Zhang, S., Li, Z., Yang, C., Zhang, J., & Xie, C. (2017). SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncology Reports, 37(6), 3449–3458. https://doi.org/10.3892/or.2017.5635

Tanner, S., & Barberis, A. (2004). CP-31398, a putative p53-stabilizing molecule tested in mammalian cells and in yeast for its effects on p53 transcriptional activity. Journal of Negative Results in Biomedicine, 3, 5. https://doi.org/10.1186/1477-5751-3-5

Tedesco, B., Vendredy, L., Timmerman, V., & Poletti, A. (2023). The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy, 19(6), 1619–1641. https://doi.org/10.1080/15548627.2022.2160564

Thus, Y. J., Eldering, E., Kater, A. P., & Spaargaren, M. (2022). Tipping the balance: Toward rational combination therapies to overcome venetoclax resistance in mantle cell lymphoma. Leukemia, 36(9), 2165–2176. https://doi.org/10.1038/s41375-022-01627-9

Tong, X., Tang, R., Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., & Shi, S. (2022). Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology, 15(1), 174. https://doi.org/10.1186/s13045-022-01392-3

Townsend, P. A., Kozhevnikova, M. V., Cexus, O. N. F., Zamyatnin, A. A., & Soond, S. M. (2021). BH3-mimetics: Recent developments in cancer therapy. Journal of Experimental & Clinical Cancer Research, 40(1), 355. https://doi.org/10.1186/s13046-021-02157-5

Tran, S., Fairlie, W. D., & Lee, E. F. (2021). BECLIN1: Protein Structure, Function and Regulation. Cells, 10(6), 1522. https://doi.org/10.3390/cells10061522

Tsapras, P., & Nezis, I. P. (2017). Caspase involvement in autophagy. Cell Death and Differentiation, 24(8), 1369–1379. https://doi.org/10.1038/cdd.2017.43

Ucker, D. S., & Levine, J. S. (2018). Exploitation of Apoptotic Regulation in Cancer. Frontiers in Immunology, 9.

https://www.frontiersin.org/articles/10.3389/fimmu.2018.00241

Verfaillie, T., Salazar, M., Velasco, G., & Agostinis, P. (2010). Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. International Journal of Cell Biology, 2010, e930509. https://doi.org/10.1155/2010/930509

Wakabayashi, Y., Masuda, T., Fujitaka, K., Nakashima, T., Okumoto, J., Shimoji, K., Nishimura, Y., Yamaguchi, K., Sakamoto, S., Horimasu, Y., Miyamoto, S., Iwamoto, H., Ohshimo, S., Hamada, H., & Hattori, N. (2021). Clinical significance of BIM deletion polymorphism in chemoradiotherapy for non-small cell lung cancer. Cancer Science, 112(1), 369–379. https://doi.org/10.1111/cas.14711

Published
2024-03-30
How to Cite
Halder, K. (2024). Apoptosis and Autophagy: Therapeutic Implications in Cancer. International Journal of Experimental Research and Review, 37(Special Vo), 36-60. https://doi.org/10.52756/ijerr.2024.v37spl.004