Apoptosis: From Oncogenesis to Oncotherapy
DOI:
https://doi.org/10.52756/ijerr.2024.v40spl.017Keywords:
Apoptosis, Cell Death, Intrinsic and Extrinsic Pathway, Targeted Therapy, Bcl-2, Caspase, MitochondriaAbstract
Cell death is critical in maintaining the balance between cell proliferation and elimination in all living organisms. Among the different modalities of regulated cell death, apoptosis remains the most extensively studied and interesting pathway for targeted carcinogenesis therapy. Dysfunctions in apoptotic pathways contribute to the development and progression of cancer, and targeting these pathways is essential for effective cancer therapy. This review provides an overview of different types of apoptotic pathways and their significance in the development and progression of cancer. We also discuss the present oncotherapy strategies targeting different cell death pathways and mechanisms and the challenges associated with apoptosis-based therapies. This review highlights the need for the development of 3-D cellular models to study the interaction between tumor cells and their microenvironment, reduced in-vivo toxicity, and increased specificity for certain drugs targeting p53 or inhibitor of apoptosis proteins (IAPs). Overall, this review provides a comprehensive understanding of the significance of apoptosis in oncogenesis and oncotherapy and the potential of targeting apoptotic pathways for effective cancer treatment.Cell death is critical in maintaining the balance between cell proliferation and elimination in all living organisms. Among the different modalities of regulated cell death, apoptosis remains the most extensively studied and interesting pathway for targeted carcinogenesis therapy. Dysfunctions in apoptotic pathways contribute to the development and progression of cancer, and targeting these pathways is essential for effective cancer therapy. This review provides an overview of different types of apoptotic pathways and their significance in the development and progression of cancer. We also discuss the present oncotherapy strategies targeting different cell death pathways and mechanisms and the challenges associated with apoptosis-based therapies. This review highlights the need for the development of 3-D cellular models to study the interaction between tumor cells and their microenvironment, reduced in-vivo toxicity, and increased specificity for certain drugs targeting p53 or inhibitor of apoptosis proteins (IAPs). Overall, this review provides a comprehensive understanding of the significance of apoptosis in oncogenesis and oncotherapy and the potential of targeting apoptotic pathways for effective cancer treatment.
References
Aglietti, R. A., Estevez, A., Gupta, A., Ramirez, M. G., Liu, P. S., Kayagaki, N., Ciferri, C., Dixit, V. M., & Dueber, E. C. (2016). GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7858–7863. https://doi.org/10.1073/pnas.1607769113
Baig, S., Seevasant, I., Mohamad, J., Mukheem, A., Huri, H. Z., & Kamarul, T. (2016). Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death & Disease, 7(1), e2058. https://doi.org/10.1038/cddis.2015.275
Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 21(11), 678–695. https://doi.org/10.1038/s41580-020-0270-8
Bertheloot, D., Latz, E., & Franklin, B. S. (2021). Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cellular & Molecular Immunology, 18(5), 1106–1121. https://doi.org/10.1038/s41423-020-00630-3
Boeckler, F. M., Joerger, A. C., Jaggi, G., Rutherford, T. J., Veprintsev, D. B., & Fersht, A. R. (2008). Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proceedings of the National Academy of Sciences, 105(30), 10360–10365. https://doi.org/10.1073/pnas.0805326105
Boga, I., & Bisgin, A. (2022). Real-world applications of tumor mutation burden (TMB) analysis using ctDNA and FFPE samples in various cancer types of Turkish population. Int. J. Exp. Res. Rev., 29, 89-93. https://doi.org/10.52756/ijerr.2022.v29.010
Boice, A., & Bouchier-Hayes, L. (2020). Targeting apoptotic caspases in cancer. Biochimica Et Biophysica Acta. Molecular Cell Research, 1867(6), 118688. https://doi.org/10.1016/j.bbamcr.2020.118688
Bussenius, J., Blazey, C. M., Aay, N., Anand, N. K., Arcalas, A., Baik, T., Bowles, O. J., Buhr, C. A., Costanzo, S., Curtis, J. K., DeFina, S. C., Dubenko, L., Heuer, T. S., Huang, P., Jaeger, C., Joshi, A., Kennedy, A. R., Kim, A. I., Lara, K., … Rice, K. D. (2012). Discovery of XL888: A novel tropane-derived small molecule inhibitor of HSP90. Bioorganic & Medicinal Chemistry Letters, 22(17), 5396–5404. https://doi.org/10.1016/j.bmcl.2012.07.052
Caenepeel, S., Brown, S. P., Belmontes, B., Moody, G., Keegan, K. S., Chui, D., Whittington, D. A., Huang, X., Poppe, L., Cheng, A. C., Cardozo, M., Houze, J., Li, Y., Lucas, B., Paras, N. A., Wang, X., Taygerly, J. P., Vimolratana, M., Zancanella, M., … Hughes, P. E. (2018). AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discovery, 8(12), 1582–1597. https://doi.org/10.1158/2159-8290.CD-18-0387
Cidado, J., Boiko, S., Proia, T., Ferguson, D., Criscione, S. W., San Martin, M., Pop-Damkov, P., Su, N., Roamio Franklin, V. N., Sekhar Reddy Chilamakuri, C., D’Santos, C. S., Shao, W., Saeh, J. C., Koch, R., Weinstock, D. M., Zinda, M., Fawell, S. E., & Drew, L. (2020). AZD4573 Is a Highly Selective CDK9 Inhibitor That Suppresses MCL-1 and Induces Apoptosis in Hematologic Cancer Cells. Clinical Cancer Research, 26(4), 922–934. https://doi.org/10.1158/1078-0432.CCR-19-1853
Courtney, K. D., Corcoran, R. B., & Engelman, J. A. (2010). The PI3K Pathway As Drug Target in Human Cancer. Journal of Clinical Oncology, 28(6), 1075–1083. https://doi.org/10.1200/JCO.2009.25.3641
Czabotar, P. E., & Garcia-Saez, A. J. (2023). Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nature Reviews Molecular Cell Biology, 24(10), 732–748. https://doi.org/10.1038/s41580-023-00629-4
Daniele, S., Pietrobono, D., Costa, B., Giustiniano, M., La Pietra, V., Giacomelli, C., La Regina, G., Silvestri, R., Taliani, S., Trincavelli, M. L., Da Settimo, F., Novellino, E., Martini, C., & Marinelli, L. (2018). Bax Activation Blocks Self-Renewal and Induces Apoptosis of Human Glioblastoma Stem Cells. ACS Chemical Neuroscience, 9(1), 85–99. https://doi.org/10.1021/acschemneuro.7b00023
Das, A., Deka, D., Banerjee, A., & Pathak, S. (2024). Evaluating the Anti-proliferative and Apoptotic Role of Atrial Natriuretic Peptide in Colon Cancer Cell Lines. International Journal of Experimental Research and Review, 38, 236-245. https://doi.org/10.52756/ijerr.2024.v38.021
Das, J., Das, M., Doke, M., Wnuk, S., Stiffin, R., Ruiz, M., & Celli, J. (2021). A small molecule inhibits pancreatic cancer stem cells. Int. J. Exp. Res. Rev., 26, 1-15. https://doi.org/10.52756/ijerr.2021.v26.001
Degterev, A., Boyce, M., & Yuan, J. (2003). A decade of caspases. Oncogene, 22(53), 8543–8567. https://doi.org/10.1038/sj.onc.1207107
Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337
Fan, Y.J., & Zong, W.-X. (2013). The cellular decision between apoptosis and autophagy. Chinese Journal of Cancer, 32(3), 121–129. https://doi.org/10.5732/cjc.012.10106
Farghadani, R., Naidu, R., Farghadani, R., & Naidu, R. (2021). The Role of Apoptosis as a Double-Edge Sword in Cancer. In Regulation and Dysfunction of Apoptosis. IntechOpen. https://doi.org/10.5772/intechopen.97844
Fujihara, K. M., Zhang, B. Z., Jackson, T. D., Ogunkola, M. O., Nijagal, B., Milne, J. V., Sallman, D. A., Ang, C.-S., Nikolic, I., Kearney, C. J., Hogg, S. J., Cabalag, C. S., Sutton, V. R., Watt, S., Fujihara, A. T., Trapani, J. A., Simpson, K. J., Stojanovski, D., Leimkühler, S., … Clemons, N. J. (2022). Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Science Advances, 8(37), eabm9427. https://doi.org/10.1126/sciadv.abm9427
Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., … Kroemer, G. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 25(3), 486–541. https://doi.org/10.1038/s41418-017-0012-4
García-Cano, J., Sánchez-Tena, S., Sala-Gaston, J., Figueras, A., Viñals, F., Bartrons, R., Ventura, F., & Rosa, J. L. (2020). Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Molecular Oncology, 14(1), 69–86. https://doi.org/10.1002/1878-0261.12592
Green, D. R., & Llambi, F. (2015). Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 7(12), a006080. https://doi.org/10.1101/cshperspect.a006080
Halder, K. (2024). Apoptosis and Autophagy: Therapeutic Implications in Cancer. International Journal of Experimental Research and Review, 37(Special Vo), 36-60. https://doi.org/10.52756/ijerr.2024.v37spl.004
Harada, H., & Grant, S. (2012). Targeting the regulatory machinery of BIM for cancer therapy. Critical Reviews in Eukaryotic Gene Expression, 22(2), 117–129. https://doi.org/10.1615/critreveukargeneexpr.v22.i2.40
He, Y., Khan, S., Huo, Z., Lv, D., Zhang, X., Liu, X., Yuan, Y., Hromas, R., Xu, M., Zheng, G., & Zhou, D. (2020). Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. Journal of Hematology & Oncology, 13(1), 103. https://doi.org/10.1186/s13045-020-00924-z
Hu, Y., Cherton-Horvat, G., Dragowska, V., Baird, S., Korneluk, R. G., Durkin, J. P., Mayer, L. D., & LaCasse, E. C. (2003). Antisense Oligonucleotides Targeting XIAP Induce Apoptosis and Enhance Chemotherapeutic Activity against Human Lung Cancer Cells in Vitro and in Vivo1. Clinical Cancer Research, 9(7), 2826–2836.
Jia, Y., Zhang, Q., Zhang, W., Andreeff, M., Jain, N., Zhang, P., Zheng, G., Zhou, D., & Konopleva, M. (2021). Targeting BCL-XL and BCL-2 By Protac 753B Effectively Eliminates AML Cells and Enhances Efficacy of Chemotherapy By Targeting Senescent Cells. Blood, 138(Supplement 1), 2230. https://doi.org/10.1182/blood-2021-147535
Kang, M. H., & Reynolds, C. P. (2009). Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy. Clinical Cancer Research, 15(4), 1126–1132. https://doi.org/10.1158/1078-0432.CCR-08-0144
Kashyap, D., Garg, V. K., & Goel, N. (2021). Chapter Four - Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. In R. Donev (Ed.), Advances in Protein Chemistry and Structural Biology, 125, 73–120. https://doi.org/10.1016/bs.apcsb.2021.01.003
Kesavan, Y., Sahabudeen, S., & Ramalingam, S. (2023). Exosomes Derived from Metastatic Colon Cancer Cells Induced Oncogenic Transformation and Migratory Potential of Immortalized Human Cells. Int. J. Exp. Res. Rev., 36, 37-46. https://doi.org/10.52756/ijerr.2023.v36.003
Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. Journal of Molecular Biology, 434(4), 167378. https://doi.org/10.1016/j.jmb.2021.167378
Kim, S. R., Lewis, J. M., Cyrenne, B. M., Monico, P. F., Mirza, F. N., Carlson, K. R., Foss, F. M., & Girardi, M. (2018). BET inhibition in advanced cutaneous T cell lymphoma is synergistically potentiated by BCL2 inhibition or HDAC inhibition. Oncotarget, 9(49), 29193–29207. https://doi.org/10.18632/oncotarget.25670
Kitada, S., Pedersen, I. M., Schimmer, A. D., & Reed, J. C. (2002). Dysregulation of apoptosis genes in hematopoietic malignancies. Oncogene, 21(21), 3459–3474. https://doi.org/10.1038/sj.onc.1205327
Konopleva, M., Jain, N., Andersen, C. L., Couto Francisco, N., Elgeioushi, N., Hobson, R., Scott, M., Stone, J., Sharma, S., Morentin Gutierrez, P., Tibes, R., Davies, B., Winkler, T., Fabbri, G., Zumla Cader, F., & McNeer, N. (2021). NIMBLE: A Phase I/II Study of AZD0466 Monotherapy or in Combination in Patients with Advanced Hematological Malignancies. Blood, 138(Supplement 1), 2353. https://doi.org/10.1182/blood-2021-147482
Kontomanolis, E. N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Research, 40(11), 6009–6015. https://doi.org/10.21873/anticanres.14622
Krawiec, K., Strzałka, P., Czemerska, M., Wiśnik, A., Zawlik, I., Wierzbowska, A., & Pluta, A. (2022). Targeting Apoptosis in AML: Where Do We Stand? Cancers, 14(20), Article 20. https://doi.org/10.3390/cancers14204995
Kulkarni, N., Tank, S., Korlekar, P., Shidhaye, S., & Barve, P. (2023). A review of gene mutations, conventional testing and novel approaches to cancer screening. Int. J. Exp. Res. Rev., 30, 134-162. https://doi.org/10.52756/ijerr.2023.v30.015
Lain, S., Hollick, J. J., Campbell, J., Staples, O. D., Higgins, M., Aoubala, M., McCarthy, A., Appleyard, V., Murray, K. E., Baker, L., Thompson, A., Mathers, J., Holland, S. J., Stark, M. J. R., Pass, G., Woods, J., Lane, D. P., & Westwood, N. J. (2008). Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator. Cancer Cell, 13(5), 454–463. https://doi.org/10.1016/j.ccr.2008.03.004
Lee, E., Song, C.-H., Bae, S.-J., Ha, K.-T., & Karki, R. (2023). Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Experimental & Molecular Medicine, 55(8), 1632–1643. https://doi.org/10.1038/s12276-023-01069-y
Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., & Korsmeyer, S. J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2(3), 183–192. https://doi.org/10.1016/s1535-6108(02)00127-7
Li, X., Fan, R., Zou, X., Gao, L., Jin, H., Du, R., Xia, L., & Fan, D. (2007). Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 358(2), 489–494. https://doi.org/10.1016/j.bbrc.2007.04.134
Lu, J., McEachern, D., Sun, H., Bai, L., Peng, Y., Qiu, S., Miller, R., Liao, J., Yi, H., Liu, M., Bellail, A., Hao, C., Sun, S.-Y., Ting, A. T., & Wang, S. (2011). Therapeutic Potential and Molecular Mechanism of a Novel, Potent, Nonpeptide, Smac Mimetic SM-164 in Combination with TRAIL for Cancer Treatment. Molecular Cancer Therapeutics, 10(5), 902–914. https://doi.org/10.1158/1535-7163.MCT-10-0864
Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9
Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5 https://doi.org/10.1007/978-981-19-1282-5_61-1
McArthur, K., Whitehead, L. W., Heddleston, J. M., Li, L., Padman, B. S., Oorschot, V., Geoghegan, N. D., Chappaz, S., Davidson, S., San Chin, H., Lane, R. M., Dramicanin, M., Saunders, T. L., Sugiana, C., Lessene, R., Osellame, L. D., Chew, T.-L., Dewson, G., Lazarou, M., … Kile, B. T. (2018). BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science (New York, N.Y.), 359(6378), eaao6047. https://doi.org/10.1126/science.aao6047
Neckers, L., & Workman, P. (2012). Hsp90 Molecular Chaperone Inhibitors: Are We There Yet? Clinical Cancer Research, 18(1), 64–76. https://doi.org/10.1158/1078-0432.CCR-11-1000
Newton, K., Strasser, A., Kayagaki, N., & Dixit, V. M. (2024). Cell death. Cell, 187(2), 235–256. https://doi.org/10.1016/j.cell.2023.11.044
Ocker, M., Neureiter, D., Lueders, M., Zopf, S., Ganslmayer, M., Hahn, E. G., Herold, C., & Schuppan, D. (2005). Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut, 54(9), 1298–1308. https://doi.org/10.1136/gut.2004.056192
Ohnishi, K., Scuric, Z., Schiestl, R. H., Okamoto, N., Takahashi, A., & Ohnishi, T. (2006). siRNA Targeting NBS1 or XIAP Increases Radiation Sensitivity of Human Cancer Cells Independent of TP53 Status. Radiation Research, 166(3), 454–462. https://doi.org/10.1667/RR3606.1
Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., Joseph, M. K., Kitada, S., Korsmeyer, S. J., Kunzer, A. R., Letai, A., Li, C., Mitten, M. J., Nettesheim, D. G., Ng, S., … Rosenberg, S. H. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 435(7042), 677–681. https://doi.org/10.1038/nature03579
Onaciu, A., Munteanu, R., Munteanu, V. C., Gulei, D., Raduly, L., Feder, R.-I., Pirlog, R., Atanasov, A. G., Korban, S. S., Irimie, A., & Berindan-Neagoe, I. (2020). Spontaneous and Induced Animal Models for Cancer Research. Diagnostics, 10(9), 660. https://doi.org/10.3390/diagnostics10090660
Park, W., Wei, S., Kim, B.-S., Kim, B., Bae, S.-J., Chae, Y. C., Ryu, D., & Ha, K.-T. (2023). Diversity and complexity of cell death: A historical review. Experimental & Molecular Medicine, 55(8), 1573–1594. https://doi.org/10.1038/s12276-023-01078-x
Pennati, M., Folini, M., & Zaffaroni, N. (2007). Targeting survivin in cancer therapy: Fulfilled promises and open questions. Carcinogenesis, 28(6), 1133–1139. https://doi.org/10.1093/carcin/bgm047
Philchenkov, A., Zavelevich, M., Kroczak, T. J., & Los, M. (2004). Caspases and cancer: Mechanisms of inactivation and new treatment modalities. Experimental Oncology, 26(2), 82–97.
Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D’Orazi, G. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 8(4), 603–619. https://doi.org/10.18632/aging.100934
Popgeorgiev, N., Sa, J. D., Jabbour, L., Banjara, S., Nguyen, T. T. M., Akhavan-E-Sabet, A., Gadet, R., Ralchev, N., Manon, S., Hinds, M. G., Osigus, H.J., Schierwater, B., Humbert, P. O., Rimokh, R., Gillet, G., & Kvansakul, M. (2020). Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Science Advances, 6(40), eabc4149. https://doi.org/10.1126/sciadv.abc4149
Quintás-Cardama, A., Hu, C., Qutub, A., Qiu, Y. H., Zhang, X., Post, S. M., Zhang, N., Coombes, K., & Kornblau, S. M. (2017). P53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia, 31(6), 1296–1305. https://doi.org/10.1038/leu.2016.350
Raj, S., Chandel, V., & Kumar, D. (2020). Cancer Cell Metabolism: Solid Tumor Versus Nonsolid Tumor. In D. Kumar (Ed.), Cancer Cell Metabolism: A Potential Target for Cancer Therapy (pp. 1–13). Springer. https://doi.org/10.1007/978-981-15-1991-8_1
Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(12), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
Riley, J. S., Quarato, G., Cloix, C., Lopez, J., O’Prey, J., Pearson, M., Chapman, J., Sesaki, H., Carlin, L. M., Passos, J. F., Wheeler, A. P., Oberst, A., Ryan, K. M., & Tait, S. W. (2018). Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. The EMBO Journal, 37(17), e99238. https://doi.org/10.15252/embj.201899238
Rippin, T. M., Bykov, V. J. N., Freund, S. M. V., Selivanova, G., Wiman, K. G., & Fersht, A. R. (2002). Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene, 21(14), 2119–2129. https://doi.org/10.1038/sj.onc.1205362
Rohn, J. L., & Noteborn, M. H. M. (2004). The viral death effector Apoptin reveals tumor-specific processes. Apoptosis, 9(3), 315–322. https://doi.org/10.1023/B:APPT.0000025808.48885.9c
Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., Bernard, D., Zhang, J., Lu, Y., Gu, Q., Shah, R. B., Pienta, K. J., Ling, X., Kang, S., Guo, M., … Wang, S. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3933–3938. https://doi.org/10.1073/pnas.0708917105
Shangary, S., & Wang, S. (2009). Small-Molecule Inhibitors of the MDM2-p53Protein-Protein Interaction to Reactivate p53 Function: A Novel Approach for Cancer Therapy. Annual Review of Pharmacology and Toxicology, 49(49), 223–241. https://doi.org/10.1146/annurev.pharmtox.48.113006.094723
Shortt, J., & Johnstone, R. W. (2012). Oncogenes in Cell Survival and Cell Death. Cold Spring Harbor Perspectives in Biology, 4(12), a009829–a009829. https://doi.org/10.1101/cshperspect.a009829
Singh, P., & Lim, B. (2022). Targeting Apoptosis in Cancer. Current Oncology Reports, 24(3), 273–284. https://doi.org/10.1007/s11912-022-01199-y
Sun, H., Liu, L., Lu, J., Qiu, S., Yang, C.-Y., Yi, H., & Wang, S. (2010). Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorganic & Medicinal Chemistry Letters, 20(10), 3043–3046. https://doi.org/10.1016/j.bmcl.2010.03.114
Thapa, S., A. Rather, R., K. Singh, S., & Bhagat, M. (2022). Insights into the Role of Defective Apoptosis in Cancer Pathogenesis and Therapy. In Y. Tutar (Ed.), Regulation and Dysfunction of Apoptosis. IntechOpen. https://doi.org/10.5772/intechopen.97536
Tong, X., Tang, R., Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., & Shi, S. (2022a). Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology, 15(1), 174. https://doi.org/10.1186/s13045-022-01392-3
Tong, X., Tang, R., Xiao, M., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., & Shi, S. (2022b). Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. Journal of Hematology & Oncology, 15(1), 174. https://doi.org/10.1186/s13045-022-01392-3
Tron, A. E., Belmonte, M. A., Adam, A., Aquila, B. M., Boise, L. H., Chiarparin, E., Cidado, J., Embrey, K. J., Gangl, E., Gibbons, F. D., Gregory, G. P., Hargreaves, D., Hendricks, J. A., Johannes, J. W., Johnstone, R. W., Kazmirski, S. L., Kettle, J. G., Lamb, M. L., Matulis, S. M., … Hird, A. W. (2018). Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nature Communications, 9(1), 5341. https://doi.org/10.1038/s41467-018-07551-w
Walrath, J. C., Hawes, J. J., Van Dyke, T., & Reilly, K. M. (2010). Genetically Engineered Mouse Models in Cancer Research. Advances in Cancer Research, 106, 113–164. https://doi.org/10.1016/S0065-230X(10)06004-5
Wang, C., & Sallman, D. A. (2022). What Are the Prospects for Treating TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia? The Cancer Journal, 28(1), 51. https://doi.org/10.1097/PPO.0000000000000569
Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research : CR, 30(1), 87. https://doi.org/10.1186/1756-9966-30-87
Zeidner, J. F., Foster, M. C., Blackford, A. L., Litzow, M. R., Morris, L. E., Strickland, S. A., Lancet, J. E., Bose, P., Levy, M. Y., Tibes, R., Gojo, I., Gocke, C. D., Rosner, G. L., Little, R. F., Wright, J. J., Doyle, L. A., Smith, B. D., & Karp, J. E. (2015). Randomized multicenter phase II study of flavopiridol (alvocidib), cytarabine, and mitoxantrone (FLAM) versus cytarabine/daunorubicin (7+3) in newly diagnosed acute myeloid leukemia. Haematologica, 100(9), Article 9. https://doi.org/10.3324/haematol.2015.125849
Zeidner, J. F., Lee, D. J., Frattini, M., Fine, G. D., Costas, J., Kolibaba, K., Anthony, S. P., Bearss, D., & Smith, B. D. (2021). Phase I Study of Alvocidib Followed by 7+3 (Cytarabine + Daunorubicin) in Newly Diagnosed Acute Myeloid Leukemia. Clinical Cancer Research, 27(1), 60–69. https://doi.org/10.1158/1078-0432.CCR-20-2649