Antioxidant Potential of Bioactive Peptides Derived from Fish Waste: A Focus on Catla catla Liver and Intestinal Tissue

  • Ayusman Behera Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Takhatpur, Baripada-757003, Mayurbhanj, Odisha, India https://orcid.org/0000-0002-7003-5896
  • Rajashree Das Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Takhatpur, Baripada-757003, Mayurbhanj, Odisha, India https://orcid.org/0000-0002-3673-0000
  • Smrutirekha Mahanta Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Takhatpur, Baripada-757003, Mayurbhanj, Odisha, India https://orcid.org/0009-0006-1452-4392
  • Jabed Akhtar Imgenex India Pvt. Ltd. E-5, Infocity, Bhubaneswar- 751024, Odisha, India https://orcid.org/0009-0002-5594-5653
  • Gargee Mohanty Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Takhatpur, Baripada-757003, Mayurbhanj, Odisha, India https://orcid.org/0000-0002-2099-6613
Keywords: Catla catla, visceral waste, FPH, BAP, Antioxidant

Abstract

Fish waste, if not managed properly, poses a significant environmental threat. Scientists worldwide have been exploring innovative ways to utilize this resource, finding applications in pharmaceuticals and nutraceuticals. One promising avenue is isolating bioactive peptides from Catla catla fish waste and assessing their antioxidant potential. Using Papain digestion, fractions were obtained from Catla catla liver waste, showing significant antioxidant activity, especially those with molecular weights of 10-100 kDa. These fractions, derived from 2% Papain digestion for 180 minutes, displayed the highest DPPH and ABTS scavenging activity. They hold promise for further investigation as potential anticarcinogenic agents. This study highlights the potential of fish waste, particularly from Catla catla liver, as a source of bioactive peptides with antioxidant properties. Further research into these fractions could lead to the development of nutraceuticals with such antioxidant peptides.

References

Abeyrathne, E. D. N. S., Lee, H. Y., Jo, C., Suh, J. W., & Ahn, D. U. (2016). Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates. Food Chemistry, 192, 107–113. https://doi.org/10.1016/J.FOODCHEM.2015.06.055

Ambigaipalan, P., & Shahidi, F. (2017). Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods, 34, 7–17. https://doi.org/10.1016/J.JFF.2017.04.013

Awuchi, C. G., Chukwu, C. N., Iyiola, A. O., Noreen, S., Morya, S., Adeleye, A. O., Twinomuhwezi, H., Leicht, K., Mitaki, N. B., & Okpala, C. O. R. (2022). Bioactive Compounds and Therapeutics from Fish: Revisiting Their Suitability in Functional Foods to Enhance Human Wellbeing. BioMed Research International, 2022. https://doi.org/10.1155/2022/3661866

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/MOLECULES27041326

Behera, A., Das, R., Patnaik, P., Mohanty, J., & Mohanty, G. (2022). A review on fish peptides isolated from fish waste with their potent bioactivities. Journal of Applied Biology & Biotechnology, 10,(3), 1–0. https://doi.org/10.7324/JABB.2022.100323

Bhaskar, N., Benila, T., Radha, C., & Lalitha, R. G. (2008). Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99(2), 335–343. https://doi.org/10.1016/J.BIORTECH.2006.12.015

Bhaskar, N., & Mahendrakar, N. S. (2008). Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology, 99(10), 4105–4111. https://doi.org/10.1016/j.biortech.2007.09.006

Cheung, R., Ng, T., & Wong, J. (2015). Marine Peptides: Bioactivities and Applications. Marine Drugs, 13(7), 4006–4043. https://doi.org/10.3390/md13074006

Christodoulou, M. C., Orellana Palacios, J. C., Hesami, G., Jafarzadeh, S., Lorenzo, J. M., Domínguez, R., Moreno, A., & Hadidi, M. (2022). Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants, 11(11), 2213. https://doi.org/10.3390/ANTIOX11112213

Cipolari, O. C., de Oliveira Neto, X. A., & Conceição, K. (2020). Fish bioactive peptides: A systematic review focused on sting and skin. Aquaculture, 515, 734598. https://doi.org/10.1016/J.AQUACULTURE.2019.734598

Coppola, D., Lauritano, C., Esposito, F. P., Riccio, G., Rizzo, C., & de Pascale, D. (2021). Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19(2). https://doi.org/10.3390/MD19020116

Elavarasan, K., & Shamasundar, B. A. (2022). Antioxidant properties of papain mediated protein hydrolysates from fresh water carps (Catla catla, Labeo rohita and Cirrhinus mrigala) and its application on inhibition of lipid oxidation in oil sardine mince during ice storage. Journal of Food Science and Technology, 59(2), 636–645. https://doi.org/10.1007/S13197-021-05053-0/METRICS

Eseroghene, E., & Ikechukwu, O. (2018). Production and evaluation of sorghum-based complementary foods supplemented with African Yam bean and Crayfish flours. Int. J. Exp. Res. Rev., 16, 14-25. https://doi.org/10.52756/ijerr.2018.v16.003

Gerhardt, P., Murray, R. G. E., Wood, W. A., & Krieg, N. R. (1994). Methods for general and molecular bacteriology. ASM, Washington DC, 518

Hoyle, N. T., & Merritt, J. H. (1994). Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, 59(1), 76–79. https://doi.org/10.1111/J.1365-2621.1994.TB06901.X

Idowu, A. T., Igiehon, O. O., Idowu, S., Olatunde, O. O., & Benjakul, S. (2021). Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. International Journal of Peptide Research and Therapeutics, 27(1), 109–118. https://doi.org/10.1007/S10989-020-10071-1/METRICS

Jafar, I., Asfar, M., Mahendradatta, M., Paradiman, A. Z., & Iqbal, M. (2024). Fish Protein Hydrolysate Research Trends over the Last 5 Years and Future Research Predictions; a Bibliometric Analysis. International Journal of Peptide Research and Therapeutics, 30(3), 1–14. https://doi.org/10.1007/S10989-024-10616-8

Lopez‐garcia, G., Dublan‐garcía, O., Arizmendi‐cotero, D., & Oliván, L. M. G. (2022). Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules, 27(4). https://doi.org/10.3390/MOLECULES27041343

Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Daz, C. (2022). Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines, 10(12). https://doi.org/10.3390/BIOMEDICINES10123051

Mohanty, U., Majumdar, R. K., Mohanty, B., Mehta, N. K., & Parhi, J. (2021). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58(11), 4349–4358. https://doi.org/10.1007/S13197-020-04915-3

Moreira, T. F. M., Gonçalves, O. H., Leimann, F. V., & Ribeiro, R. P. (2023). Fish Protein Hydrolysates: Bioactive Properties, Encapsulation and New Technologiesfor Enhancing Peptides Bioavailability. Current Pharmaceutical Design, 29(11), 824–836. https://doi.org/10.2174/1381612829666230110141811

Mondal, P., Adhikary, P., Sadhu, S., Choudhary, D., Thakur, D., Shadab, M., Mukherjee, D., Parvez, S., Pradhan, S., Kuntia, M., Manna, U., & Das, A. (2022). Assessment of the impact of the different point sources of pollutants on the river water quality and the evaluation of bioaccumulation of heavy metals into the fish ecosystem thereof. Int. J. Exp. Res. Rev., 27, 32-38. https://doi.org/10.52756/ijerr.2022.v27.003

Murthy, L. N., Phadke, G. G., Unnikrishnan, P., Annamalai, J., Joshy, C. G., Zynudheen, A. A., & Ravishankar, C. N. (2018). Valorization of Fish Viscera for Crude Proteases Production and Its Use in Bioactive Protein Hydrolysate Preparation. Waste and Biomass Valorization, 9(10), 1735–1746. https://doi.org/10.1007/S12649-017-9962-5/METRICS

Nikoo, M., & Benjakul, S. (2015). Potential application of seafood-derived peptides as bifunctional ingredients, antioxidant–cryoprotectant: A review. Journal of Functional Foods, 19, 753–764. https://doi.org/10.1016/J.JFF.2015.10.014

Ortizo, R. G. G., Sharma, V., Tsai, M. L., Wang, J. X., Sun, P. P., Nargotra, P., Kuo, C. H., Chen, C. W., & Dong, C. D. (2023). Extraction of Novel Bioactive Peptides from Fish Protein Hydrolysates by Enzymatic Reactions. Applied Sciences, 13(9), 5768. https://doi.org/10.3390/APP13095768

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2012). Use of Hydrolysates from Yellowfin Tuna (Thunnus albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria. Food and Bioprocess Technology, 5(1), 73–79. https://doi.org/10.1007/S11947-009-0225-8/METRICS

Saha, S., Samal, A., Mallick, A., & Santra, S. (2017). Pesticide Residue in Marketable Meat and Fish of Nadia district, West Bengal, India Int. J. Exp. Res. Rev., 9, 47-53.

Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of Functional Foods, 3(4), 229–254. https://doi.org/10.1016/J.JFF.2011.05.006

Shahi, Z., Sayyed, A., Seyyedeh, Z., & Najafian, L. (2020). Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. Press Cake. Heliyon, 6(2). https://doi.org/10.1016/J.HELIYON.2020.E03365

Tambunan, I., Siringo-Ringo, E., Butar-Butar, M., Febrianti, R., & Gurning, K. (2024). Phytochemical Screening, Identification of Compounds, and Antioxidant Activity Test of Sirsak Extract (Annona muricata, L.) Leaf Grown in North Sumatra, Indonesia. International Journal of Advancement in Life Sciences Research, 7(2), 132-142. https://doi.org/10.31632/ijalsr.

Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: current applications and future directions. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/S41392-022-00904-4

Wu, H., Liu, Z., Zhao, Y., & Zeng, M. (2012). Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Research International, 48(2), 435–441. https://doi.org/10.1016/J.FOODRES.2012.04.013

You, L., Zhao, M., & Regenstein, J. (2010). Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray. Food Research International, 43(4), 1167–1173. https://doi.org/https://doi.org/10.1016/j.foodres.2010.02.009

Zhang, Y., Li, Y., Quan, Z., Xiao, P., & Duan, J.A. (2024). New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants, 13(2), 203.

https://doi.org/10.3390/ANTIOX13020203

Published
2024-05-30
How to Cite
Behera, A., Das, R., Mahanta, S., Akhtar, J., & Mohanty, G. (2024). Antioxidant Potential of Bioactive Peptides Derived from Fish Waste: A Focus on Catla catla Liver and Intestinal Tissue. International Journal of Experimental Research and Review, 39(Spl Volume), 39-50. https://doi.org/10.52756/ijerr.2024.v39spl.003