Circular RNAs: Therapeutic Uses in Colorectal Cancer
DOI:
https://doi.org/10.52756/ijerr.2024.v45spl.022Keywords:
Circular RNAs, Therapeutic Applications, Colorectal Cancer, Clinical Significance of Circular RNAAbstract
Circular RNA (circRNA) emerges as a significant sub-type of single-stranded non-coding RNA within colorectal cancer (CRC), boasting high abundance. Delving into research, numerous pivotal roles of circRNA in therapeutic contexts within CRC have come to light, encompassing areas such as metastasis, apoptosis, and proliferation. Moreover, circRNAs exhibit significant involvement in the advancement of therapeutic strategies, demonstrating unique correlations with tumor staging, size and overall survival rates in colorectal cancer. These associations position circRNAs as potential candidates for both anticancer interventions and prognostic biomarkers. Among all cancers, colorectal cancer is the second most prevalent cause of cancer-related death and the third most common disease to be diagnosed worldwide. To gain deeper insights into the impact of circRNA-based therapeutic developments on CRC and its progression, this comprehensive review aims to synthesize the roles of specific therapeutic applications targeting circRNAs in CRC. It also aims to evaluate circRNAs' potential as useful therapeutic targets and prognostic indicators in the context of colorectal cancer. The overarching goal of this review is to illuminate the landscape of therapeutic strategies and aid in clinical decision-making processes related to CRC. By elucidating the intricate interplay between circRNAs and therapeutic interventions, this review seeks to contribute to the advancement of therapeutic modalities and improve patient outcomes in the realm of colorectal cancer management.
References
Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., & Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 56(1), 55-66. https://doi.org/10.1016/j.molcel.2014.08.019
Bai, L., Gao, Z., Jiang, A., Ren, S., & Wang, B. (2023). Circ_0001535 facilitates tumor malignant progression by miR-485-5p/LASP1 axis in colorectal cancer. Balkan Medical Journal, 40(2), 97-106. https://doi.org/10.4274/balkanmedj.galenos.2022.2022-6-51
Barrett, S. P., Wang, P. L., & Salzman, J. (2015). Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife, 4, e07540. https://doi.org/10.7554/eLife.07540
Cao, Q., Guo, Z., Du, S., Ling, H., & Song, C. (2020). Circular RNAs in the pathogenesis of atherosclerosis. Life Sciences, 255, 117837. https://doi.org/10.1016/j.lfs.2020.117837
Chen, R.X., Chen, X., Xia, L.P., Zhang, J.X., Pan, Z.Z., Ma, X.D., Han, K., Chen, J.W., Judde, J.G., Deas, O., Wang, F., Ma, N.F., Guan, X.Y., Yun, J.P., Wang, F.W., Xu, R.H., & Xie, D. (2019). N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nature Communications, 10(1), 1-15. https://doi.org/10.1038/s41467-019-12651-2
Chen, Z.G., Zhao, H.J., Lin, L., Liu, J.B., Bai, J.Z., & Wang, G.S. (2020). Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR?193a/HMGB1/PI3K/AKT axis. Cancer Reports, 3(4), e13603. https://doi.org/10.1111/1759-7714.13603
Conn, S. J., Pillman, K. A., Toubia, J., Conn, V. M., Salmanidis, M., Phillips, C. A., Roslan, S., Schreiber, A. W., Gregory, P. A., & Goodall, G. J. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell, 160(6), 1125-1134. https://doi.org/10.1016/j.cell.2015.02.014
Ding, N., You, A. B., Yang, H., Hu, G. S., Lai, C. P., Liu, W., & Ye, F. (2023). A Tumor-suppressive Molecular Axis EP300/circRERE/miR-6837-3p/MAVS Activates Type I IFN Pathway and Antitumor Immunity to Suppress Colorectal Cancer. Clinical Cancer Research, 29(11), 2095-2109. https://doi.org/10.1158/1078-0432.CCR-22-3836
Eger, N., Schoppe, L., Schuster, S., Laufs, U., & Boeckel, J. N. (2018). Circular RNA splicing. In H. Xiao (Ed.), Circular RNAs: Methods in Molecular Biology, 1724, 109-121. Springer. https://doi.org/10.1007/978-981-13-1426-1_4
Fang, G., Xu, D., Zhang, T., Wang, G., Qiu, L., Gao, X., & Miao, Y. (2023). Biological functions, mechanisms, and clinical significance of circular RNA in colorectal cancer. Frontiers in Oncology, 13, 1138481. https://doi.org/10.3389/fonc.2023.1138481
Fang, Y., Wang, X., Li, W., Han, J., Jin, J., Su, F., Zhang, J., Huang, W., Xiao, F., Pan, Q., & Zou, L. (2018). Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. International Journal of Molecular Medicine, 42(3), 1561-1572. https://doi.org/10.3892/ijmm.2018.3783
Garikipati, V. N. S., Verma, S. K., Cheng, Z., Liang, D., Truongcao, M. M., Cimini, M., Yue, Y., Huang, G., Wang, C., Benedict, C., Tang, Y., Mallaredy, V., Ibetti, J., Grisanti, L., Schumacher, S. M., Gao, E., Rajan, S., Wilusz, J. E., Goukassian, D., Houser, S. R., Koch, W. J., & Kishore, R. (2019). Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nature Communications, 10(1), 1-14. https://doi.org/10.1038/s41467-019-11777-7
Ghanbarian, M., Afgar, A., Yadegarazari, R., Najafi, R., & Teimoori-Toolabi, L. (2019). Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomedicine & Pharmacotherapy, 117, 109152. https://doi.org/10.1016/j.biopha.2018.09.112
Guo, J. U., Agarwal, V., Guo, H., & Bartel, D. P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biology, 15(7), 409. https://doi.org/10.1186/s13059-014-0409-z
Halder, K. (2024). Apoptosis and Autophagy: Therapeutic Implications in Cancer. International Journal of Experimental Research and Review, 37(Special Vo), 36-60. https://doi.org/10.52756/ijerr.2024.v37spl.004
Halloy, F., Biscans, A., Bujold, K. E., Debacker, A., Hill, A. C., Lacroix, A., Luige, O., Strömberg, R., Sundstrom, L., Vogel, J., & Ghidini, A. (2022). Innovative developments and emerging technologies in RNA therapeutics. Expert Review of Molecular Diagnostics, 22(5), 409-423. https://doi.org/10.1080/15476286.2022.2027150
Han, K., Wang, F.W., Cao, C.H., Ling, H., Chen, J.W., Chen, R.X., Feng, Z.H., Luo, J., Jin, X.H., Duan, J.L., Li, S.M., Ma, N.F., Yun, J.P., Guan, X.Y., Pan, Z.Z., Lan, P., Xu, R.H., & Xie, D. (2020). CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. BMC Cancer, 20(1), 98. https://doi.org/10.1186/s12943-020-01184-8
Hsu, M. T., & Coca-Prados, M. (1979). Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 280(5720), 339-340. https://doi.org/10.1038/280339a0
Huang, C., Liang, D., Tatomer, D. C., & Wilusz, J. E. (2018). A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes & Development, 32(9-10), 639-644. https://doi.org/10.1101/gad.314856.118
Hussen, B. M., Abdullah, S. R., Mohammed, A. A., Rasul, M. F., Hussein, A. M., Eslami, S., Glassy, M. C., & Taheri, M. (2024). Advanced strategies of targeting circular RNAs as therapeutic approaches in colorectal cancer drug resistance. Pharmacology & Therapeutics, 249, 155402. https://doi.org/10.1016/j.prp.2024.155402
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., & Rajewsky, N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Reports, 10(8), 1701-1711. https://doi.org/10.1016/j.celrep.2014.12.019
Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., ... & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157. https://doi.org/10.1261/rna.035667.112
Kang, L., Tian, Y., Xu, S., & Chen, H. (2020). Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment. Journal of Neurology, 267(9), 2607–2619. https://doi.org/10.1007/s00415-020-09942-w
Kelly, S., Greenman, C., Cook, P. R., & Papantonis, A. (2015). Exon skipping is correlated with exon circularization. Journal of Molecular Biology, 427(9), 2250-2261. https://doi.org/10.1016/j.jmb.2015.02.018
Kramer, M. C., Liang, D., Tatomer, D. C., Gold, B., March, Z. M., Cherry, S., & Wilusz, J. E. (2015). Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes & Development, 29(19), 2168-2181. https://doi.org/10.1101/gad.270421.115
Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology, and characterization of circular RNAs. Nature Reviews Molecular Cell Biology, 20(11), 675-691. https://doi.org/10.1038/s41576-019-0158-7
Kristensen, L. S., Jakobsen, T., Hager, H., & Kjems, J. (2021). The emerging roles of circRNAs in cancer and oncology. Nature Reviews Clinical Oncology, 18(5), 244-258. https://doi.org/10.1038/s41571-021-00585-y
Kumar, A., Gautam, V., Sandhu, A., Rawat, K., Sharma, A., & Saha, L. (2023). Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World Journal of Gastrointestinal Surgery, 15(4), 495-510. https://doi.org/10.4240/wjgs.v15.i4.495
Lan, H., Liu, Y., Liu, J., Wang, X., Guan, Z., Du, J., & Jin, K. (2021). Tumor-Associated Macrophages Promote Oxaliplatin Resistance via METTL3-Mediated m6A of TRAF5 and Necroptosis in Colorectal Cancer. Molecular Pharmaceutics, 18(3), 1397-1410. https://doi.org/10.1021/acs.molpharmaceut.0c00961
Li, H., Peng, K., Yang, K., Ma, W., Qi, S., Yu, X., He, J., Lin, X., & Yu, G. (2024). Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics, 14(1), 107-122. https://doi.org/10.7150/thno.77350
Li, H., Peng, K., Yang, K., Ma, W., Qi, S., Yu, X., He, J., Lin, X., & Yu, G. (2022). Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics, 12(14), 6422-6436. https://doi.org/10.7150/thno.77350
Li, T., Wang, W. C., McAlister, V., Zhou, Q., & Zheng, X. (2021). Circular RNA in colorectal cancer. Journal of Cellular and Molecular Medicine, 25(8), 3667-3679. https://doi.org/10.1111/jcmm.16380
Li, X. N., Wang, Z. J., Ye, C. X., Zhao, B. C., Li, Z. L., & Yang, Y. (2018). RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 37(1), 325. https://doi.org/10.1186/s13046-018-1006-x
Li, Y., Zhang, J., Huo, C., Ding, N., Li, J., Xiao, J., Lin, X., Cai, B., Zhang, Y., & Xu, J. (2017). Dynamic organization of lncRNA and circular RNA regulators collectively controlled cardiac differentiation in humans. EBioMedicine, 24, 143-156. https://doi.org/10.1016/j.ebiom.2017.09.015
Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., & Shan, G. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256-264. https://doi.org/10.1038/nsmb.2959
Liang, W., & Deutscher, M. P. (2014). Ribosomes regulate the stability and action of the exoribonuclease RNase R. Journal of Biological Chemistry, 289(8), 4580-4586. https://doi.org/10.1074/jbc.M113.519553
Lin, C., Ma, M., Zhang, Y., Li, L., Long, F., Xie, C., Xiao, H., Liu, T., Tian, B., Yang, K., Guo, Y., Chen, M., Chou, J., Gong, N., & Hu, G. (2022). The N6-methyladenosine modification of circALG1 promotes the metastasis of colorectal cancer mediated by the miR-342-5p/PGF signalling pathway. BMC Cancer, 22(1), 167. https://doi.org/10.1186/s12943-022-01560-6
Liu, H., Lan, T., Li, H., Xu, L., Chen, X., Liao, H., Chen, X., Du, J., Cai, Y., Wang, J., Li, X., Huang, J., Yuan, K., & Zeng, Y. (2021). Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics, 11(3), 1396-1411. https://doi.org/10.7150/thno.53227
Liu, Z., Zhou, Y., Liang, G., Ling, Y., Tan, W., Tan, L., Andrews, R., Zhong, W., Zhang, X., Song, E., & Gong, C. (2018). Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death & Disease, 9(2), 287. https://doi.org/10.1038/s41419-018-1287-1
Ma, J., Zeng, S., Zhang, Y., Deng, G., Qu, Y., Guo, C., Yin, L., Han, Y., Cai, C., Li, Y., Wang, G., Bonkovsky, H. L., & Shen, H. (2018). BMP4 promotes oxaliplatin resistance by an induction of epithelial-mesenchymal transition via MEK1/ERK/ELK1 signaling in hepatocellular carcinoma. Cancer Letters, 417, 53-62. https://doi.org/10.1016/j.canlet.2017.09.041
Ma, Y., Liu, Y., & Jiang, Z. (2020). CircRNAs: A new perspective of biomarkers in the nervous system. Biomedicine & Pharmacotherapy, 128, 110251. https://doi.org/10.1016/j.biopha.2020.110251
Martinez-Balibrea, E., Martínez-Cardús, A., Ginés, A., Ruiz de Porras, V., Moutinho, C., Layos, L., Manzano, J. L., Bugés, C., Bystrup, S., Esteller, M., & Abad, A. (2015). Tumor-Related Molecular Mechanisms of Oxaliplatin Resistance. Molecular Cancer Therapeutics, 14(8), 1764–1771. https://doi.org/10.1158/1535-7163.MCT-14-0636
Madhu, N.R., Sarkar, B., Biswas, P., Roychoudhury, S., Behera, B.K., & Acharya, C.K. (2023). Therapeutic potential of melatonin in glioblastoma: Current knowledge and future prospects. Biomarkers in Cancer Detection and Monitoring of Therapeutics, Volume-2. Elsevier Inc., pp. 371-386. ISBN 978-0-323-95114-2. https://doi.org/10.1016/B978-0-323-95114-2.00002-9
Madhu, N.R., Sarkar, B., Roychoudhury, S., Behera, B.K. (2022). Melatonin Induced in Cancer as a Frame of Zebrafish Model. © Springer Nature Singapore Pte Ltd. 2022, S. Pathak et al. (eds.), Handbook of Animal Models and its Uses in Cancer Research, pp. 1-18. ISBN: 978-981-19-1282-5 https://doi.org/10.1007/978-981-19-1282-5_61-1
Mauri, G., Gori, V., Bonazzina, E., Amatu, A., Tosi, F., Bencardino, K., Ruggieri, L., Patelli, G., Arena, S., Bardelli, A., Siena, S., & Sartore-Bianchi, A. (2021). Oxaliplatin retreatment in metastatic colorectal cancer: Systematic review and future research opportunities. Cancer Treatment Reviews, 93, 102112. https://doi.org/10.1016/j.ctrv.2020.102112
Nath, S., Datta, A., Das, A., & Adhikari, S. (2024). Metal-Based Drugs in Cancer Therapy. International Journal of Experimental Research and Review, 37(Special Vol), 159-173. https://doi.org/10.52756/ijerr.2024.v37spl.014
Nicolet, B. P., Engels, S., Aglialoro, F., van den Akker, E., von Lindern, M., & Wolkers, M. C. (2018). Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Research, 46(16), 6630-6641. https://doi.org/10.1093/nar/gky721
Norguet, E., Dahan, L., Gaudart, J., Gasmi, M., Ouafik, L., & Seitz, J. F. (2011). Cetuximab after bevacizumab in metastatic colorectal cancer: is it the best sequence? Digestive and Liver Disease, 43(11), 917–919. https://doi.org/10.1016/j.dld.2011.06.002
Obi, P., & Chen, Y. G. (2021). The design and synthesis of circular RNAs. Methods, 188, 46-56. https://doi.org/10.1016/j.ymeth.2021.02.020
Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., Chua, Z. M., Fristrup, N., Nielsen, M. M., Vang, S., Dyrskjøt, L., Aigner, S., Damgaard, C. K., Yeo, G. W., & Pedersen, J. S. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112. https://doi.org/10.1186/s13073-020-00812-8
Pritchard, C. C., & Grady, W. M. (2011). Colorectal cancer molecular biology moves into clinical practice. Gut, 60(1), 116-129. https://doi.org/10.1136/gut.2009.206250
Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., Wu, Z., Tang, H., Zhang, X., Tian, F., Wang, C., Xiao, X., Dong, X., Guo, L., Lu, S., Yang, C., Tang, C., Yang, Y., Yu, W., Wang, J., Zhou, Y., Huang, Q., Yisimayi, A., Liu, S., Huang, W., Cao, Y., Wang, Y., Zhou, Z., Peng, X., Wang, J., Xie, X. S., & Wei, W. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 185(12), 2262-2274. https://doi.org/10.1016/j.cell.2022.03.044
Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., Sun, W., Dou, K., & Li, H. (2015). Circular RNA: A new star of noncoding RNAs. Cancer Letters, 365(2), 141-148. https://doi.org/10.1016/j.canlet.2015.06.003
Qu, X., Yang, L., Shi, Q., Wang, X., Wang, D., & Wu, G. (2018). Lidocaine inhibits proliferation and induces apoptosis in colorectal cancer cells by upregulating miR-520a-3p and targeting EGFR. Progress in Pharmacology, 24, 50-60. https://doi.org/10.1016/j.prp.2018.09.012
Robbins, M., Judge, A., & MacLachlan, I. (2009). siRNA and innate immunity. Oligonucleotides, 19(2), 89-97. https://doi.org/10.1089/oli.2009.0180
Ruan, H. G., Gu, W. C., Xia, W., Gong, Y., Zhou, X. L., Chen, W. Y., & Xiong, J. (2021). METTL3 is suppressed by circular RNA circMETTL3/miR-34c-3p signalling and limits tumor growth and metastasis in triple-negative breast cancer. Frontiers in Oncology, 11, 778132. https://doi.org/10.3389/fonc.2021.778132
Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., ... & Rajewsky, N. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58(5), 870-885. https://doi.org/10.1016/j.molcel.2015.03.027
Sadri Nahand, J., Jamshidi, S., Hamblin, M. R., Mahjoubin-Tehran, M., Vosough, M., Jamali, M., Khatami, A., Moghoofei, M., Bannazadeh Baghi, H., & Mirzaei, H. (2020). Circular RNAs: New epigenetic signatures in viral infections. Frontiers in Microbiology, 11, 1853. https://doi.org/10.3389/fmicb.2020.01853
Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLOS Genetics, 9(9), e1003777. https://doi.org/10.1371/journal.pgen.1003777
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N., & Brown, P. O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE, 7(2), e30733. https://doi.org/10.1371/journal.pone.0030733
Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., Chen, C., Chang, W., Ping, Y., Ji, P., Wu, J., Quan, W., Yao, Y., Zhou, Y., Sun, Z., & Li, D. (2020). Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-?1 axis. Molecular Cancer, 19(1), 117. https://doi.org/10.1186/s12943-020-01235-0
Sharma, R., et al. (2022). Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Gastroenterology & Hepatology. https://doi.org/10.1016/S2468-1253(22)00210-2
Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63(1), 11-30. https://doi.org/10.3322/caac.21166
Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L.-H., & Bindereif, A. (2014). Exon circularization requires canonical splice signals. Cell Reports, 9(5), 1836–1849. https://doi.org/10.1016/j.celrep.2014.12.002
Suzuki, H., Zuo, Y., Wang, J., Zhang, M. Q., Malhotra, A., & Mayeda, A. (2006). Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Research, 34(8), e63. https://doi.org/10.1093/nar/gkl151
Tan, W. L. W., Lim, B. T. S., Anene-Nzelu, C. G. O., Ackers-Johnson, M., Dashi, A., See, K., Tiang, Z., Paul Lee, D., Chua, W. W., Luu, T. D. A., Li, P. Y. Q., Richards, A. M., & Foo, R. S. Y. (2017). A landscape of circular RNA expression in the human heart. Cardiovascular Research, 113(11), 1453-1461. https://doi.org/10.1093/cvr/cvw250
Tang, M., Lu, X., Zhang, C., Du, C., Cao, L., Hou, T., Li, Z., Tu, B., Cao, Z., Li, Y., et al. (2017). Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics, 7(5), 1346–1359. https://doi.org/10.7150/thno.18804
Tang, W., Ji, M., He, G., Yang, L., Niu, Z., Jian, M., Wei, Y., Ren, L., & Xu, J. (2017). Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. OncoTargets and Therapy, 10, 5607-5617. https://doi.org/10.2147/OTT.S131597
Tay, M. L.-I., & Pek, J. W. (2017). Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Current Biology, 27(7), 1033-1044. https://doi.org/10.1016/j.cub.2017.02.040
Wang, C., Tan, S., Li, J., Liu, W. R., Peng, Y., & Li, W. (2020). CircRNAs in lung cancer: Biogenesis, function, and clinical implication. Cancer Letters, 497, 31-40. https://doi.org/10.1016/j.canlet.2020.08.013
Wang, H., Zhang, X., Li, Y., Li, Y., & Pang, T. (2022). Lidocaine hampers colorectal cancer process via circITFG2/miR-1204/SOCS2 axis. Clinical and Translational Discovery, 2(1), e1091. https://doi.org/10.1097/CAD.0000000000001091
Wang, P. L., Bao, Y., Yee, M.-C., Barrett, S. P., Hogan, G. J., Olsen, M. N., Dinneny, J. R., Brown, P. O., & Salzman, J. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLOS ONE, 9(6), e90859. https://doi.org/10.1371/journal.pone.0090859
Wang, S., Cheng, L., Wu, H., & Li, G. (2022). Mechanisms and prospects of circular RNAs and their interacting signaling pathways in colorectal cancer. Frontiers in Oncology, 12, 949656. https://doi.org/10.3389/fonc.2022.949656
Wang, X., Zhang, H., Yang, H., Bai, M., Ning, T., Deng, T., Liu, R., Fan, Q., Zhu, K., Li, J., Zhan, Y., Ying, G., & Ba, Y. (2020). Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Journal of Cellular Physiology, 235(8), 6001–6015. https://doi.org/10.1002/1878-0261.12629
Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., Wang, G., Wu, P., Wang, H., Jiang, L., Yuan, W., Sun, Z., & Ming, L. (2019). Exosomal circRNAs: Biogenesis, effect, and application in human diseases. Journal of Experimental & Clinical Cancer Research, 38(1), 120. https://doi.org/10.1186/s12943-019-1041-z
Wang, Y., Zhang, B., Zhu, Y., Zhang, Y., Li, L., Shen, T., & et al. (2022). Hsa_circ_0000523/miR-let-7b/METTL3 axis regulates proliferation, apoptosis and metastasis in the HCT116 human colorectal cancer cell line. Oncology Letters, 23(6), 186. https://doi.org/10.3892/ol.2022.13306
Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R., & Lai, E. C. (2014). Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports, 9(5), 1966-1980. https://doi.org/10.1016/j.celrep.2014.10.062
Winkle, M., El-Daly, S. M., Fabbri, M., & Calin, G. A. (2021). Noncoding RNA therapeutics: Challenges and potential solutions. Nature Reviews Drug Discovery, 20(9), 629-648. https://doi.org/10.1038/s41573-021-00219-z
Wu, W., Ji, P., & Zhao, F. (2020). CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Nature Communications, 11(1), 3496. https://doi.org/10.1186/s13059-020-02018-y
Yang, C., Zhang, Y., Lin, S., Liu, Y., & Li, W. (2021). Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging, 13(9), 13001-13016. https://doi.org/10.18632/aging.202774
Yin, Y., Yao, S., Hu, Y., Feng, Y., Li, M., Bian, Z., Zhang, J., Qin, Y., Qi, X., Zhou, L., Fei, B., Zou, J., Hua, D., & Huang, Z. (2017). The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clinical Cancer Research, 23(24), 7400-7411. https://doi.org/10.1158/1078-0432.CCR-17-1283
You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., Akbalik, G., Wang, M., Glock, C., Quedenau, C., Wang, X., Hou, J., Liu, H., Sun, W., Sambandan, S., Chen, T., Schuman, E. M., & Chen, W. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature Neuroscience, 18(4), 603-610. https://doi.org/10.1038/nn.3975
Zaiou, M. (2020). circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications. Cells, 9(3), 659. https://doi.org/10.3390/cells9030659
Zaiou, M. (2020). The emerging role and promise of circular RNAs in obesity and related metabolic disorders. Cells, 9(6), 1473. https://doi.org/10.3390/cells9061473
Zaphiropoulos, P. G. (1996). Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping. Proceedings of the National Academy of Sciences, 93(13), 6536–6541. https://doi.org/10.1073/pnas.93.13.6536
Zhang, C., & Zhang, B. (2022). RNA therapeutics: Updates and future potential. National Science Review, 9(1), nwab140. https://doi.org/10.1007/s11427-022-2171-2
Zhang, F., Su, T., & Xiao, M. (2022). RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via the miR-107/PER3 axis. Cell Death & Disease, 13(7), 548. https://doi.org/10.1038/s41419-022-04750-8
Zhang, J., Liu, H., Zhao, P., Zhou, H., & Mao, T. (2019). Has_circ_0055625 from circRNA profile increases colon cancer cell growth by sponging miR-106b-5p. Journal of Cellular Biochemistry, 120(9), 16376-16386. https://doi.org/10.1002/jcb.27355
Zhang, P., Zuo, Z., Shang, W., Wu, A., Bi, R., Wu, J., Li, S., Sun, X., & Jiang, L. (2017). Identification of differentially expressed circular RNAs in human colorectal cancer. Tumour Biology, 39, 1010428317694546. https://doi.org/10.1177/1010428317694546
Zhang, Q., Zheng, Y., Liu, J., Tang, X., Wang, Y., Li, X., Zhou, X., Tang, S., Tang, Y., Wang, X., He, H., & Li, T. (2023). CircIFNGR2 enhances proliferation and migration of CRC and induces cetuximab resistance by indirectly targeting KRAS via sponging to MiR-30b. Cell Death & Disease, 14(1), 24. https://doi.org/10.1038/s41419-022-05536-8
Zhang, X.O., Wang, H.B., Zhang, Y., Lu, X., Chen, L.L., & Yang, L. (2014). Complementary sequence-mediated exon circularization. Cell, 159(1), 134-147. https://doi.org/10.1016/j.cell.2014.09.001
Zhang, Y., Luo, J., Yang, W., & Ye, W.C. (2023). CircRNAs in colorectal cancer: Potential biomarkers and therapeutic targets. Cell Death & Disease, 14, 334. https://doi.org/10.1038/s41419-023-05881-2
Zhang, Y., Tan, X., & Lu, Y. (2022). Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis. Journal of Physiology and Biochemistry, 78(1), 39–50. https://doi.org/10.1007/s13105-021-00831-y
Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J.-L., Yang, L., & Chen, L.-L. (2016). The Biogenesis of Nascent Circular RNAs. Cell Reports, 15(3), 611-624. https://doi.org/10.1016/j.celrep.2016.03.058
Zhang, Y., Yu, H., & Guo, Z. (2021). Circ_KIAA1199 inhibits MSI1 degradation by targeting miR-34c-5p to drive the malignant cell behaviors and tumor growth of colorectal cancer. Cancer Diagnostics and Prognosis, 1(3), 141–150. https://doi.org/10.1097/CAD.0000000000001164
Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., ... & Yang, L. L. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806. https://doi.org/10.1016/j.molcel.2013.08.017
Zhao, X., Cai, Y., & Xu, J. (2019). Circular RNAs: Biogenesis, mechanism, and function in human cancers. International Journal of Molecular Sciences, 20(16), 3926. https://doi.org/10.3390/ijms20163926
Zheng, X., Chen, L., Zhou, Y., Wang, Q., Zheng, Z., Xu, B., Wu, C., Zhou, Q., Hu, W., Wu, C., & Jiang, J. (2019). A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Cancer Cell International, 19, 63. https://doi.org/10.1186/s12943-019-1010-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.