A Hybrid Transfer Learning Approach Using Obesity Data for Predicting Cardiovascular Diseases Incorporating Lifestyle Factors

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v46.001

Keywords:

Cardiovascular disease Prediction, Machine Learning, Obesity data, Prediction models, Supervised learning, Transfer learning

Abstract

Cardiovascular Diseases (CVDs), particularly heart diseases, are becoming a significant global public health concern. This study enhances CVD detection through a novel approach that integrates obesity prediction using machine learning (ML) models. Specifically, a model trained on an obesity dataset was used to add an 'Obesity level' feature to the heart disease dataset, leveraging the relation of high obesity with increased heart disease risk. We have also calculated BMI and added as a feature in CVD dataset. We evaluated this transfer learning-based novel approach alongside eight ML models. Performance of these models was assessed using precision, recall, accuracy and F1-score metrics. Our research aims to provide healthcare practitioners with reliable tools for early disease diagnosis. Results indicate that ensemble learning methods, which combine the strengths of multiple models, significantly improve accuracy compared to other classifiers. We are able to achieve a 74% accuracy score along with 0.72 F1 score, 0.77 precision and 0.80 AUC with XGBoost classifier, followed closely by the DNN with 73.7% accuracy with 0.72 F1 score, 0.75 precision and AUC of 0.798 with our proposed model. We seek to enhance healthcare efficiency and promote public health by integrating AI-based solutions into medical practice. The findings demonstrate the potential of ML techniques and the effectiveness of incorporating obesity-related features for optimized cardiovascular disease detection.

References

Abu-Naser, S. S., Obaid, T., Abumandil, M. S. S., & Mahmoud, A. Y. (2023). Heart Disease Prediction Using a Group of Machine and Deep Learning Algorithms. Advances on Intelligent Computing and Data Science, pp. 81–196. https://doi.org/10.1007/978-3-031-36258-3_16

Ahmed, R., Bibi, M., & Syed, S. (2023). Improving Heart Disease Prediction Accuracy Using a Hybrid Machine Learning Approach: A Comparative study of SVM and KNN Algorithms. International Journal of Computations, Information and Manufacturing (IJCIM), 3(1), 49–54. https://doi.org/10.54489/ijcim.v3i1.223

Akil, L., & Ahmad, H. A. (2011). Relationships between Obesity and Cardiovascular Diseases in Four Southern States and Colorado. Journal of Health Care for the Poor and Underserved, 22(4A), 61–72. https://doi.org/10.1353/hpu.2011.0166

Alghamdi, F. A., Almanaseer, H., Jaradat, G., Jaradat, A., Alsmadi, M. K., Jawarneh, S., Almurayh, A. S., Alqurni, J., & Alfagham, H. (2024). Multilayer Perceptron Neural Network with Arithmetic Optimization Algorithm-Based Feature Selection for Cardiovascular Disease Prediction. Machine Learning and Knowledge Extraction, 6(2), 987–1008. https://doi.org/10.3390/make6020046

Al-shoaibi, A. A. A., Li, Y., Song, Z., Hong, Y. J., Chiang, C., Nakano, Y., Hirakawa, Y., Matsunaga, M., Ota, A., Tamakoshi, K., & Yatsuya, H. (2024). Associations of overweight and obesity with the risk of cardiovascular disease according to metabolic risk factors among middle-aged Japanese workers: The Aichi Workers’ cohort study. Obesity Research & Clinical Practice, 18(2), 101–108. https://doi.org/10.1016/j.orcp.2024.02.006

Bhatt, C. M., Patel, P., Ghetia, T., & Mazzeo, P. L. (2023). Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms, 16(2), 88. https://doi.org/10.3390/a16020088

Bhavekar, G. S., Das Goswami, A., Vasantrao, C. P., Gaikwad, A. K., Zade, A. V., & Vyawahare, H. (2024). Heart disease prediction using machine learning, deep Learning and optimization techniques-A semantic review. Multimedia Tools and Applications, 83(39), 86895–86922. https://doi.org/10.1007/s11042-024-19680-0

Carbone, S., Canada, J. M., Billingsley, H. E., Siddiqui, M. S., Elagizi, A., & Lavie, C. J. (2019). Obesity paradox in cardiovascular disease: where do we stand? Vascular Health and Risk Management, 15, 89–100. https://doi.org/10.2147/vhrm.s168946

Cardiovascular Disease dataset. (2019). Kaggle. https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

Dormandy, J. A. (1987). Cardiovascular diseases. In Developments in cardiovascular medicine, pp. 165–194. https://doi.org/10.1007/978-94-009-4285-1_6

Estimation of Obesity Levels Based on Eating Habits and Physical Condition. (n.d.). UCI Machine Learning Repository. Retrieved March 27, 2024, from https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition

Ferdowsy, F., Rahi, K. S. A., Jabiullah, Md. I., & Habib, Md. T. (2021). A machine learning approach for obesity risk prediction. Current Research in Behavioral Sciences, 2, 100053. https://doi.org/10.1016/j.crbeha.2021.100053

Gogoi, U. R. (2023). Importance of Feature Selection Methods in Machine Learning-Based Obesity Prediction, pp. 45–59. https://doi.org/10.1007/978-3-031-41925-6_3

Kaur, R., Kumar, R., & Gupta, M. (2022). Predicting risk of obesity and meal planning to reduce the obese in adulthood using artificial intelligence. Endocrine, 78(3), 458–469. https://doi.org/10.1007/s12020-022-03215-4

Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y. R., & Suraj, R. S. (2021). Heart Disease Prediction using Hybrid machine Learning Model. 2021 6th International Conference on Inventive Computation Technologies (ICICT), pp. 1329–1333. https://doi.org/10.1109/icict50816.2021.9358597

Khan, Md. I. H., & Mondal, M. R. H. (2020). Data-Driven Diagnosis of Heart Disease. International Journal of Computer Applications, 176(41), 46–54. https://doi.org/10.5120/ijca2020920549

Krittanawong, C., Virk, H. U. H., Bangalore, S., Wang, Z., Johnson, K. W., Pinotti, R., Zhang, H., Kaplin, S., Narasimhan, B., Kitai, T., Baber, U., Halperin, J. L., & Tang, W. H. W. (2020). Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72685-1

Kumar, L., Anitha, C., Ghodke, V. N., Nithya, N., Drave, V. A., & Farhana, A. (2023). Deep Learning Based Healthcare Method for Effective Heart Disease Prediction. EAI Endorsed Transactions on Pervasive Health and Technology, 9. https://doi.org/10.4108/eetpht.9.4283

Madhual, S., Nayak, D., Dalei, S., Padhi, T., & Das, N. R. (2023). Assessment of cardiovascular risk factors in male androgenetic alopecia: A case control study in a tertiary care hospital of western Odisha. Int. J. Exp. Res. Rev., 36, 425-432. https://doi.org/10.52756/ijerr.2023.v36.037

Maiga, J., Hungilo, G. G., & Pranowo. (2019). Comparison of Machine Learning Models in Prediction of Cardiovascular Disease Using Health Record Data. 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pp. 45–48. https://doi.org/10.1109/icimcis48181.2019.8985205

Modi, K., Singh, I., & Kumar, Y. (2023). A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases. Archives of Computational Methods in Engineering, 30(8), 4733–4756. https://doi.org/10.1007/s11831-023-09957-2

Modi, K., Singh, I., & Kumar, Y. (2024). Predicting asthma control test score using machine learning regression models. In CRC Press eBooks, pp. 190–197. https://doi.org/10.1201/9781003466383-29

Naser, M. A., Majeed, A. A., Alsabah, M., Al-Shaikhli, T. R., & Kaky, K. M. (2024). A Review of Machine Learning’s Role in Cardiovascular Disease Prediction: Recent Advances and Future Challenges. Algorithms, 17(2), 78. https://doi.org/10.3390/a17020078

Pasha, S. N., Ramesh, D., Mohmmad, S., Harshavardhan, A., & Shabana, N. (2020). Cardiovascular disease prediction using deep learning techniques. IOP Conference Series Materials Science and Engineering, 981(2), 022006. https://doi.org/10.1088/1757-899x/981/2/022006

Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., & St-Onge, M. (2021). Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143(21). https://doi.org/10.1161/cir.0000000000000973

Ranganathan, L., Rajasundaram, A., & Kumar, S. K. (2024). Demographic and Lifestyle Factors Influencing Cardiovascular Health Among Construction Workers: A Cross-Sectional Analysis. International Journal of Experimental Research and Review, 42, 312-319. https://doi.org/10.52756/ijerr.2024.v42.027

Rippe, J. M. (2018). Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. American Journal of Lifestyle Medicine, 13(2), 204–212. https://doi.org/10.1177/1559827618812395

Saputra, J., Lawrencya, C., Saini, J. M., & Suharjito, S. (2023). Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Visual Computing for Industry, Biomedicine, and Art, 6(1). https://doi.org/10.1186/s42492-023-00143-6

Sarkar, B., Biswas, P., Acharya, C.K., Jana, S.K., Nahar, N., Ghosh, S., Dasgupta, D., Ghorai, S.K., & Madhu, N.R. (2022). Obesity Epidemiology: A Serious Public Health Concern in India. Chettinad Health City Medical Journal, 11(1), 21-28. https://doi.org/10.24321/2278.2044.202205.

Sarkar, B., Ghorai, S. K., Jana, S. K., Dasgupta, D., Acharya, C. K., Nahar, N., Ghosh, S., & Madhu, N.R. (2021). Overweight and obesity in West Bengal: A Serious Public Health Issue. VEETHIKA-An International Interdisciplinary Research Journal,7(4), 9-14. https://doi.org/10.48001/veethika.2021.07.04.002

Shorewala, V. (2021). Early detection of coronary heart disease using ensemble techniques. Informatics in Medicine Unlocked, 26, 100655. https://doi.org/10.1016/j.imu.2021.100655

Singh, J., Sandhu, J. K., & Kumar, Y. (2024). Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning. Service Oriented Computing and Applications, 18(2), 163–182. https://doi.org/10.1007/s11761-023-00382-8

Sivaraman, K., & Khanna, V. (2021). Machine Learning Models for Prediction of Cardiovascular Diseases. Journal of Physics Conference Series, 2040(1), 012051. https://doi.org/10.1088/1742-6596/2040/1/012051

Subramani, S., Varshney, N., Anand, M. V., Soudagar, M. E. M., Al-keridis, L. A., Upadhyay, T. K., Alshammari, N., Saeed, M., Subramanian, K., Anbarasu, K., & Rohini, K. (2023). Cardiovascular diseases prediction by machine learning incorporation with deep learning. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1150933

Waigi, R., Choudhary, S., Fulzele, P., & Mishra, G. (2020). Predicting the risk of heart disease using advanced machine learning approach. European Prediction. EAI Endorsed Transactions on Pervasive Health and Technology, 9. https://doi.org/10.4108/eetpht.9.4283

Madhual, S., Nayak, D., Dalei, S., Padhi, T., & Das, N. R. (2023). Assessment of cardiovascular risk factors in male androgenetic alopecia: A case control study in a tertiary care hospital of western Odisha. Int. J. Exp. Res. Rev., 36, 425-432. https://doi.org/10.52756/ijerr.2023.v36.037

Maiga, J., Hungilo, G. G., & Pranowo. (2019). Comparison of Machine Learning Models in Prediction of Cardiovascular Disease Using Health Record Data. 2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pp. 45–48. https://doi.org/10.1109/icimcis48181.2019.8985205

Modi, K., Singh, I., & Kumar, Y. (2023). A Comprehensive Analysis of Artificial Intelligence Techniques for the Prediction and Prognosis of Lifestyle Diseases. Archives of Computational Methods in Engineering, 30(8), 4733–4756. https://doi.org/10.1007/s11831-023-09957-2

Modi, K., Singh, I., & Kumar, Y. (2024). Predicting asthma control test score using machine learning regression models. In CRC Press eBooks, pp. 190–197. https://doi.org/10.1201/9781003466383-29

Naser, M. A., Majeed, A. A., Alsabah, M., Al-Shaikhli, T. R., & Kaky, K. M. (2024). A Review of Machine Learning’s Role in Cardiovascular Disease Prediction: Recent Advances and Future Challenges. Algorithms, 17(2), 78. https://doi.org/10.3390/a17020078

Pasha, S. N., Ramesh, D., Mohmmad, S., Harshavardhan, A., & Shabana, N. (2020). Cardiovascular disease prediction using deep learning techniques. IOP Conference Series Materials Science and Engineering, 981(2), 022006. https://doi.org/10.1088/1757-899x/981/2/022006

Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., & St-Onge, M. (2021). Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143(21). https://doi.org/10.1161/cir.0000000000000973

Ranganathan, L., Rajasundaram, A., & Kumar, S. K. (2024). Demographic and Lifestyle Factors Influencing Cardiovascular Health Among Construction Workers: A Cross-Sectional Analysis. International Journal of Experimental Research and Review, 42, 312-319. https://doi.org/10.52756/ijerr.2024.v42.027

Rippe, J. M. (2018). Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. American Journal of Lifestyle Medicine, 13(2), 204–212. https://doi.org/10.1177/1559827618812395

Saputra, J., Lawrencya, C., Saini, J. M., & Suharjito, S. (2023). Hyperparameter optimization for cardiovascular disease data-driven prognostic system. Visual Computing for Industry, Biomedicine, and Art, 6(1). https://doi.org/10.1186/s42492-023-00143-6

Sarkar, B., Biswas, P., Acharya, C.K., Jana, S.K., Nahar, N., Ghosh, S., Dasgupta, D., Ghorai, S.K., & Madhu, N.R. (2022). Obesity Epidemiology: A Serious Public Health Concern in India. Chettinad Health City Medical Journal, 11(1), 21-28. https://doi.org/10.24321/2278.2044.202205.

Sarkar, B., Ghorai, S. K., Jana, S. K., Dasgupta, D., Acharya, C. K., Nahar, N., Ghosh, S., & Madhu, N.R. (2021). Overweight and obesity in West Bengal: A Serious Public Health Issue. VEETHIKA-An International Interdisciplinary Research Journal,7(4), 9-14. https://doi.org/10.48001/veethika.2021.07.04.002

Shorewala, V. (2021). Early detection of coronary heart disease using ensemble techniques. Informatics in Medicine Unlocked, 26, 100655. https://doi.org/10.1016/j.imu.2021.100655

Singh, J., Sandhu, J. K., & Kumar, Y. (2024). Metaheuristic-based hyperparameter optimization for multi-disease detection and diagnosis in machine learning. Service Oriented Computing and Applications, 18(2), 163–182. https://doi.org/10.1007/s11761-023-00382-8

Sivaraman, K., & Khanna, V. (2021). Machine Learning Models for Prediction of Cardiovascular Diseases. Journal of Physics Conference Series, 2040(1), 012051. https://doi.org/10.1088/1742-6596/2040/1/012051

Subramani, S., Varshney, N., Anand, M. V., Soudagar, M. E. M., Al-keridis, L. A., Upadhyay, T. K., Alshammari, N., Saeed, M., Subramanian, K., Anbarasu, K., & Rohini, K. (2023). Cardiovascular diseases prediction by machine learning incorporation with deep learning. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1150933

Waigi, R., Choudhary, S., Fulzele, P., & Mishra, G. (2020). Predicting the risk of heart disease using advanced machine learning approach. European Journal of Molecular & Clinical Medicine, 1638–1640.

Wankhede, J., Kumar, M., & Sambandam, P. (2020). Efficient heart disease prediction?based on optimal feature selection using DFCSS and classification by improved Elman?SFO. IET Systems Biology, 14(6), 380–390. https://doi.org/10.1049/iet-syb.2020.0041

World Health Organization (WHO). (2021). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Published

2024-12-30

How to Cite

Modi, K., Singh, I., & Kumar, Y. (2024). A Hybrid Transfer Learning Approach Using Obesity Data for Predicting Cardiovascular Diseases Incorporating Lifestyle Factors. International Journal of Experimental Research and Review, 46, 1–18. https://doi.org/10.52756/ijerr.2024.v46.001

Issue

Section

Articles