A Dynamic Supply Modulator in 18 nm FinFET Node Using Comparator Approach
DOI:
https://doi.org/10.52756/ijerr.2024.v44spl.020Keywords:
3.5GHz, 8-bit comparator, 5G, 18nm FinFET, supply modulatorAbstract
To keep up with the rapid development and to increase spectral efficiency, emerging communication systems like 5G will need to transfer data at speeds significantly faster than those of current systems. The subject of this study is radio frequency (RF) circuit systems, with an emphasis on efficiency enhancement for RF power amplifiers (PA). To cut costs and size, the majority of a smartphone's components are now integrated into a single chip. Regardless of the input signal's magnitude, the fundamental idea behind the envelope tracking (ET) approach is to operate the linear PA in its high-efficiency area. This is achieved by modulating the linear PA's supply voltage, which is as low as 1V, after determining the input signal's magnitude. In view of reducing the chip area and enhancing the efficiency of the PA, an 18nm FinFET node has been used and a comparator-based approach is demonstrated. Keeping the parameters of the 5G specifications in mind, a single-bit comparator is designed to operate at the Sub-6 GHz frequency band with a centre frequency of 3.5 GHz. The propagation delay of the comparator is as low as 67.18ps, and the 8-bit comparator, designed by cascading single-bit comparators, serves as the dynamic power source for the supply modulator. This study provides scope for further development in integrating the comparator with an RF PA for efficiency enhancement. The digital approach of using a comparator instead of bulky circuits provides an upper edge in terms of power consumption and reduction in chip area. The power consumption of the entire efficiency-enhanced PA in an 18nm FinFET technology is expected to reduce considerably in comparison with the CMOS technology.
References
Arif, M., Bhuiyan, S., Badal, T. I., Bin, M., Reaz, I., Liz, C. M., & Cicuttin, A. (2019). Design Architectures of the CMOS Power Amplifier for 2.4 GHz ISM Band Applications: An Overview. In Electronics. DOI: https://doi.org/10.3390/electronics8050477
Askari, S., Nourani, M., & Namazi, A. (2011). Fault-tolerant A/D converter using analogue voting. IET Circuits, Devices and Systems, 5(6), 462–470. https://doi.org/10.1049/iet-cds.2011.0042 DOI: https://doi.org/10.1049/iet-cds.2011.0042
Barmala, E. (2019). Design and simulate a Doherty power amplifier using GaAs technology for telecommunication applications. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 845–854.
https://doi.org/10.11591/ijeecs.v15.i2.pp845-854 DOI: https://doi.org/10.11591/ijeecs.v15.i2.pp845-854
Bhadada, R. (2023). High Purity Orbital Angular Momentum Modes Reconfiguration Using Uniform Circular Array Antenna to Enhance Channel Capacity and Spectral Efficiency. International Journal of Experimental Research and Review (IJERR), 36, 285–310. https://doi.org/10.52756/ijerr.2023.v36.027 DOI: https://doi.org/10.52756/ijerr.2023.v36.027
Casañas, C. W. V., Souza, G. A. F., Saotome, O., & Moreno, R. L. (2022). Low power current comparator circuit using a cascode transistor structure for bias generation. Microelectronics Journal, 121, 105359. https://doi.org/10.1016/j.mejo.2022.105359 DOI: https://doi.org/10.1016/j.mejo.2022.105359
Cervera, A., & Peretz, M. M. (2016). Envelope tracking power supply for volume-sensitive low-power applications based on a resonant switched-capacitor converter. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2016-May, 2298–2303. https://doi.org/10.1109/APEC.2016.7468186 DOI: https://doi.org/10.1109/APEC.2016.7468186
Claeys, C., & Simoen, E. (2019). Advanced CMOS integration technologies for future mobile applications. SBMicro 2019 - 34th Symposium on Microelectronics Technology and Devices, 2020, pp. 1–7. https://doi.org/10.1109/SBMicro.2019.8919478 DOI: https://doi.org/10.1109/SBMicro.2019.8919478
Fouzy, B. B. A., Reaz, M. B. I., Bhuiyan, M. A. S., Badal, M. T. I., & Hashim, F. H. (2017). Design of a low-power high-speed comparator in 0.13?m CMOS. 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering, ICAEES 2016, 63, 289–292. https://doi.org/10.1109/ICAEES.2016.7888054 DOI: https://doi.org/10.1109/ICAEES.2016.7888054
Gangadharan, S., Khanam, R., & Thangasamy, V. (2024a). A Multilevel Supply Modulator for RF Power Amplifier?: Comparator Based Approach. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 11(2), 974–983. https://doi.org/10.5109/7183379 DOI: https://doi.org/10.5109/7183379
Gangadharan, S., Khanam, R., & Thangasamy, V. (2024b). Design , Implementation and Performance Analysis of RF Power Amplifier for 5G Mobile Communication in the Sub-6 GHz Band Using Advanced Node 18nm FinFET Technology. Mathematical Modelling of Engineering Problems, 11(4), 1079–1089. https://doi.org/10.18280/mmep.110426 DOI: https://doi.org/10.18280/mmep.110426
Huo, Y., Dong, X., Xu, W., & Yuen, M. (2019). Enabling Multi-Functional 5G and beyond User Equipment: A Survey and Tutorial. IEEE Access, 7, 116975–117008. https://doi.org/10.1109/ACCESS.2019.2936291 DOI: https://doi.org/10.1109/ACCESS.2019.2936291
Jain, V., Tayal, S., Singla, P., Mittal, V., Gupta, S., & Ajayan, J. (2021). An Intensive Study of Thermal Effects in High Speed Low Power CMOS Dynamic Comparators. Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021, 250–254. https://doi.org/10.1109/ICCES51350.2021.9488992 DOI: https://doi.org/10.1109/ICCES51350.2021.9488992
Jaisawal, R. K., Rathore, S., Kondekar, P. N., Yadav, S., Awadhiya, B., Upadhyay, P., & Bagga, N. (2022). Assessing the analog/RF and linearity performances of FinFET using high threshold voltage techniques. Semiconductor Science and Technology, 37(5), 055010. https://doi.org/10.1088/1361-6641/ac6128 DOI: https://doi.org/10.1088/1361-6641/ac6128
Kajal, & Sharma, V. K. (2020). FinFET: A Beginning of Non-planar Transistor Era. In Nanoscale VLSI Devices, Circuits and Applications, pp. 139–159. Springe Nature Singapore. https://doi.org/10.1007/978-981-15-7937-0 DOI: https://doi.org/10.1007/978-981-15-7937-0_8
Kawatra, A., & Bhatia, V. (2018). A Reference Generating Voltage Wide Range Low Power Current Comparator. Proceedings - IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2018, 788–791. https://doi.org/10.1109/ICACCCN.2018.8748345 DOI: https://doi.org/10.1109/ICACCCN.2018.8748345
Kundu, D., Guin, S., Nagajyothi, G., & Sridevi, S. (2018). High Speed FinFET Traff Comparator Based Function Generator. 7th IEEE International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2018, pp. 414–418. https://doi.org/10.1109/ICCPEIC.2018.8525184 DOI: https://doi.org/10.1109/ICCPEIC.2018.8525184
Leng, W., Abidi, A. A., Mundlapudi, S. R., Darabi, H., Chowdhury, D., Afsahi, A., & Li, S. (2022). Envelope Tracking Supply Modulator with Trellis-Search-Based Switching and 160-MHz Capability. IEEE Journal of Solid-State Circuits, 57(3), 719–733. https://doi.org/10.1109/JSSC.2021.3128394 DOI: https://doi.org/10.1109/JSSC.2021.3128394
Leonardo B Moraes, Alexandra Lackmann Zimpeck, Meinhardt, C., & Ricardo Reis. (2020). Robust FinFET Schmitt Trigger Designs for Low Power Applications. 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019 Cusco, Peru, October 6–9, 2019, 45–68. https://doi.org/10.1007/978-3-030-53273-4 DOI: https://doi.org/10.1007/978-3-030-53273-4_3
Lin, Y., & Patterson, A. (2020). Design Solutions for 5G Power Amplifiers using 0 . 15?m and 0 . 25?m GaN HEMTs. International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2020, 1–3.https://doi.org/10.1109/VLSI-DAT49148.2020.9196306 DOI: https://doi.org/10.1109/VLSI-DAT49148.2020.9196306
Mariappan, S., Rajendran, J., Mohd Noh, N., Yusof, Y., & Kumar, N. (2022). A 23.3 dBm CMOS power amplifier with third-order gm cancellation linearization technique achieving OIP3 of 34 dBm. Circuit World, 48(2), 215–222. https://doi.org/10.1108/CW-08-2020-0209 DOI: https://doi.org/10.1108/CW-08-2020-0209
Mariappan, S., Rajendran, J., Noh, N. M., Ramiah, H., & Manaf, A. A. (2020). Energy efficiency in CMOS power amplifier designs for ultralow power mobile wireless communication systems. Turkish Journal of Electrical Engineering and Computer Sciences, 28(1), 1–16. https://doi.org/10.3906/elk-1903-47 DOI: https://doi.org/10.3906/elk-1903-47
Moraes, L. B., Zimpeck, A. L., Meinhardt, C., & Reis, R. (2019). Minimum Energy FinFET Schmitt Trigger Design Considering Process Variability. IEEE/IFIP International Conference on VLSI and System-on-Chip, VLSI-SoC, pp. 88–93.
https://doi.org/10.1109/VLSI-SoC.2019.8920297 DOI: https://doi.org/10.1109/VLSI-SoC.2019.8920297
Niknejad, A. M., Chowdhury, D., & Chen, J. (2012). Design of CMOS power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6 PART 2), 1784–1796. https://doi.org/10.1109/TMTT.2012.2193898 DOI: https://doi.org/10.1109/TMTT.2012.2193898
Park, B., Kim, D., Kim, S., Cho, Y., Kim, J., Kang, D., Jin, S., Moon, K., & Kim, B. (2016). High-Performance CMOS Power Amplifier with Improved Envelope Tracking Supply Modulator. IEEE Transactions on Microwave Theory and Techniques, 64(3), 798–809.
https://doi.org/10.1109/TMTT.2016.2518659 DOI: https://doi.org/10.1109/TMTT.2016.2518659
Shah, P., Mandalapu, S., Thakker, R. A., & Naik, A. (2022). Design and Simulation of CCII based CMOS current comparator in 130nm technology. ICDCS 2022 - 2022 6th International Conference on Devices, Circuits and Systems, April, pp. 156–160.
https://doi.org/10.1109/ICDCS54290.2022.9780756 DOI: https://doi.org/10.1109/ICDCS54290.2022.9780756
Sharan, B., Sagar, A., & Rajak, N. (2024). Microstrip Planar Antennas for C-Band Wireless Applications. International Journal of Experimental Research and Review, 38, 147-153. https://doi.org/10.52756/ijerr.2024.v38.013 DOI: https://doi.org/10.52756/ijerr.2024.v38.013
Sohn, C. W., Kang, C. Y., Baek, R. H., Choi, D. Y., Sagong, H. C., Jeong, E. Y., Baek, C. K., Lee, J. S., Lee, J. C., & Jeong, Y. H. (2012). Device design guidelines for nanoscale FinFETs in RF/analog applications. IEEE Electron Device Letters, 33(9), 1234–1236.
https://doi.org/10.1109/LED.2012.2204853 DOI: https://doi.org/10.1109/LED.2012.2204853
Tinoco, J. C., Salas Rodriguez, S., Martinez-Lopez, A. G., Alvarado, J., & Raskin, J. P. (2013). Impact of extrinsic capacitances on FinFet RF performance. IEEE Transactions on Microwave Theory and Techniques, 61(2), 833–840.
https://doi.org/10.1109/TMTT.2012.2231697 DOI: https://doi.org/10.1109/TMTT.2012.2231697
Vallabhuni, R. R., Sravya, D. V. L., Shalini, M. S., & Maheshwararao, G. U. (2020). Design of comparator using 18nm FinFET technology for analog to digital converters. 2020 7th International Conference on Smart Structures and Systems, ICSSS 2020.
https://doi.org/10.1109/ICSSS49621.2020.9202164 DOI: https://doi.org/10.1109/ICSSS49621.2020.9202164
Vasjanov, A., & Barzdenas, V. (2018). A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks. Electronics (Switzerland), 7(11), 1–17. https://doi.org/10.3390/electronics7110271 DOI: https://doi.org/10.3390/electronics7110271
Wang, Z. (2015). Demystifying Envelope Tracking: Use for High-Efficiency Power Amplifiers for 4G and beyond. IEEE Microwave Magazine, 16(3), 106–129. https://doi.org/10.1109/MMM.2014.2385351 DOI: https://doi.org/10.1109/MMM.2014.2385351
Yu, F., Gao, L., Liu, L., Qian, S., Cai, S., & Song, Y. (2020). A 1 V, 0.53 ns, 59 ?W Current Comparator Using Standard 0.18 ?m CMOS Technology. Wireless Personal Communications, 111(2), 843–851. https://doi.org/10.1007/S11277-019-06888-9/METRICS DOI: https://doi.org/10.1007/s11277-019-06888-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.