A Study of RF Power Amplifiers for 5G and Future Generation Mobile Communication: Can FinFET Replace CMOS?

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v46.018

Keywords:

Linear Power Amplifiers, CMOS, RF Circuits, Envelope Tracking

Abstract

A low-power strategy that can manage analogue, digital, and RF functionalities on a similar chip is crucial for wireless systems. Various difficulties restrict the widespread adoption of CMOS power amplifiers despite the fact that they provide highly integrated, low-cost wireless communication. Some of the main issues with CMOS power amplifiers include non-linearity, low breakdown voltage, a lack of high-voltage capacitors, and incorrect RF models. The RF signal is amplified without distortions using a linear power amplifier (LPA), which is less effective whenever driven by constant voltage. In order to significantly enhance the effectiveness of the power amplifiers, three frequently utilised techniques—Doherty, envelope elimination and restoration (EER), and envelope tracking (ET) techniques are reviewed in this work. Results point towards ET approach as the one that is ideally suited for future mobile communication systems. The essential component of ET systems, the envelope tracking power source, is what determines how effectively the system functions. It also lists the benefits of FinFET technology over CMOS and looks at three well-liked techniques for increasing power amplifier efficiency. Considering the advent of mobile communications systems, the frequency band and peak-to-average power ratio (PAPR) are quickly growing, posing significant design issues. FinFET as an alternative may considerably reduce the chip area.

References

Abdulkhaleq, A. M., Yahya, M. A., McEwan, N., Rayit, A., Alhameed, R. A. A., Parchin, N. O., Al-Yasir, Y. I. A., & Noras, J. (2019). Recent developments of dual-band doherty power amplifiers for upcoming mobile communications systems. Electronics (Switzerland), 8(6), 1–19. https://doi.org/10.3390/electronics8060638

An, K. . (2009). CMOS RF Power Amplifiers for Mobile Wireless Communications. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA,.

Atalla, Y., Hashim, Y., Ghafar, A. N. A., & Jabbar, W. A. (2020). Temperature characteristics of FinFET based on channel fin width and working voltage. International Journal of Electrical and Computer Engineering, 10(6), 5650–5657. https://doi.org/10.11591/ijece.v10i6.pp5650-5657

Badal, T. I., Reaz, M. B. I., Bhuiyan, M. A. S., & Kamal, N. (2019). CMOS transmitters for 2.4-GHz RF devices: Design architectures of the 2.4-GHz CMOS transmitter for RF devices. IEEE Microwave Magazine, 20(1), 38–61. https://doi.org/10.1109/MMM.2018.2875607

Band, I. S. M., An, A., Arif, M., Bhuiyan, S., Badal, T. I., Bin, M., & Reaz, I. (2019). Design Architectures of the CMOS Power Amplifier. Electronics, 8(5), 1–21. https://doi.org/doi:10.3390/electronics8050477

Barmala, E. (2019). Design and simulate a Doherty power amplifier using GaAs technology for telecommunication applications. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 845–854. https://doi.org/10.11591/ijeecs.v15.i2.pp845-854

Bortoni, R., Noceti Filho, S., & Seara, R. (2002). On the design and efficiency of class A, B, AB, G, and H audio power amplifier output stages. AES: Journal of the Audio Engineering Society, 50(7–8), 547–563.

Bruch, R., Baaske, J., Chatelle, C., Meirich, M., Madlener, S., Weber, W., Dincer, C., & Urban, G. A. (2019). CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Advanced Materials, 31(51). https://doi.org/10.1002/adma.201905311

Cabrera, F. L., & Rangel de Sousa, F. (2020). Test Strategy for a 25-dBm 1-GHz CMOS Power Amplifier in a Wireless Power Transfer Context. International Journal of Electronics, 108(3), 426–441. https://doi.org/10.1080/00207217.2020.1794052

Callender, S., Shin, W., Lee, H. J., Pellerano, S., & Hull, C. (2018). FinFET for mm Wave - Technology and Circuit Design Challenges. 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium, BCICTS 2018, pp. 168–173. https://doi.org/10.1109/BCICTS.2018.8551125

Chandra, K. S., & Kishore, K. H. (2019). Electrical characteristics of double gate finfet under different modes of operation. International Journal of Innovative Technology and Exploring Engineering, 8(6), 172–175.

Chaves De Albuquerque, T., Issartel, D., Clerc, R., Pittet, P., Cellier, R., Uhring, W., Cathelin, A., & Calmon, F. (2019). Body-biasing considerations with SPAD FDSOI: Advantages and drawbacks. European Solid-State Device Research Conference, 2019-Septe, 210–213. https://doi.org/10.1109/ESSDERC.2019.8901825

Chen, Y. C., Lin, Y. H., Lin, J. L., & Wang, H. (2018). A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS. IEEE Microwave and Wireless Components Letters, 28(12), 1134–1136. https://doi.org/10.1109/LMWC.2018.2878133

Choi, H. (2019). Development of a class-C power amplifier with diode expander architecture for point-of-care ultrasound systems. Micromachines, 10(10). https://doi.org/10.3390/mi10100697

Choi, H., Jung, H., & Shung, K. K. (2015). Power amplifier linearizer for high frequency medical ultrasound applications. Journal of Medical and Biological Engineering, 35(2), 226–235. https://doi.org/10.1007/s40846-015-0026-7

Dhar, S. K., Sharma, T., Darraji, R., Holmes, D. G., Staudinger, J., Zhou, X. Y., Mallette, V., & Ghannouchi, M. F. (2020). Impact of input nonlinearity on efficiency, power, and linearity performance of GaN RF power amplifiers. IEEE MTT-S International Microwave Symposium Digest, 2020-Augus (January 2021), 281–284. https://doi.org/10.1109/IMS30576.2020.9224110

Ensan, S. S., Moaiyeri, M. H., Moghaddam, M., & Hessabi, S. (2019). A low-power single-ended SRAM in FinFET technology. AEU - International Journal of Electronics and Communications, 99, 361–368. https://doi.org/10.1016/j.aeue.2018.12.015

Fritzin, J., & Alvandpour, A. (2010). Linköping University Post Print transformer-based power amplifier in 65 nm Based Power Amplifier in 65nm CMOS. 64, 241–247.

Gangadharan, S., Khanam, R., & Thangasamy, V. (2024). A Dynamic Supply Modulator in 18 nm FinFET Node Using Comparator Approach. International Journal of Experimental Research and Review, 44, 234–244. https://doi.org/10.52756/ijerr.2024.v44spl.020

Goswami, N., Moka Saicharan, Mohd Ahmed Siddique, & Kavya D. (2019). A Literature Survey on CMOS Power Amplifiers. https://osf.io/u8rs7/download

Hassan, M., Asbeck, P. M., & Larson, L. E. (2013). A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE Envelope Tracking RF power amplifiers. IEEE International Solid State Circuits Conference, pp. 366–368.

Hu, S., Wang, F., & Wang, H. (2019). A 28-/37-/39-GHz Linear Doherty Power Amplifier in Silicon for 5G Applications. IEEE Journal of Solid-State Circuits, 54(6), 1589–1599. https://doi.org/10.1109/JSSC.2019.2902307

Jain, P. U., & Tomar, V. K. (2020). FinFET Technology?: As A Promising Alternatives for Conventional MOSFET Technology. 2020 International Conference on Emerging Smart Computing and Informatics, ESCI 2020, 43–47. https://doi.org/10.1109/ESCI48226.2020.9167646

Kahn, L. R. (1952). Single-Sideband Transmission by Envelope Elimination and Restoration. Proceedings of the IRE, 40(7), 803–806. https://doi.org/10.1109/JRPROC.1952.273844

Kimball, D. F., Jeong, J., Hsia, C., Draxler, P., Lanfranco, S., Nagy, W., Linthicum, K., Larson, L. E., & Asbeck, P. M. (2006). High-efficiency envelope-tracking W-CDMA base-station amplifier using GaN HFETs. IEEE Transactions on Microwave Theory and Techniques, 54(11), 3848–3855. https://doi.org/10.1109/TMTT.2006.884685

Ko, J., & Nam, S. (2019). A 0 . 4 – 1 . 2 GHz Reconfigurable CMOS Power Amplifier for 802 . 11ah / af Applications. IEICE Transactions on Electronics, E102-C(1), 91–94. https://doi.org/10.1587/transele.E102.C.91

Ko, J., Seo, B., & Nam, S. (2018). A Reconfigurable Broadband CMOS Power Amplifier for Long-Range WLAN Applications (Vol. 6, Issue 1).

Koo, B., Na, Y., & Hong, S. (2012). Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement. IEEE Transactions on Microwave Theory and Techniques, 60(2), 340–351. https://doi.org/10.1109/TMTT.2011.2177857

Kwak, M., Jeong, J., Hassan, M., Yan, J. J., Kimball, D. F., Asbeck, P. M., & Larson, L. E. (2012). High efficiency wideband envelope tracking power amplifier with direct current sensing for LTE applications. RWW 2012 - Proceedings: 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, PAWR 2012, 41–44. https://doi.org/10.1109/PAWR.2012.6174933

Lazarevic, V. Z., Zubitur, I., Vasic, M., Oliver, J. A., Alou, P., Patchin, G., Eltze, J., & Cobos, J. A. (2019). Highly efficient and compact GaN-based tracking power supply system for linear power amplifiers. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March(March), pp. 431–436. https://doi.org/10.1109/APEC.2019.8721957

Long, J. R. (2000). Monolithic transformers for silicon RF IC design. IEEE Journal of Solid-State Circuits, 35(9), 1368–1382. https://doi.org/10.1109/4.868049

Manickam, S. (2019). Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers. RF Systems, Circuits and Components, September. https://doi.org/10.5772/intechopen.79187

Mohammed, M. U., Nizam, A., Ali, L., & Chowdhury, M. H. (2021). FinFET based SRAMs in Sub-10nm domain. Microelectronics Journal, 114(June). https://doi.org/10.1016/j.mejo.2021.105116

Mukku, P. K., Naidu, S., Mokara, D., Pydi Reddy, P., & Sunil Kumar, K. (2020). Recent Trends and Challenges on Low-Power FinFET Devices. Smart Innovation, Systems and Technologies, 160(March 2021), 499–510. https://doi.org/10.1007/978-981-32-9690-9_55

Nguyen, D. P., Pham, T., & Pham, A. V. (2018). A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells. IEEE Transactions on Microwave Theory and Techniques, 66(6), 2628–2637. https://doi.org/10.1109/TMTT.2018.2816024

Nikandish, G., Staszewski, R. B., & Zhu, A. (2020). Breaking the bandwidth limit: A review of broadband doherty power amplifier design for 5G. IEEE Microwave Magazine, 21(4), 57–75. https://doi.org/10.1109/MMM.2019.2963607

Pae, S. O. I. W. B., & Abstract, A. (2018). 28 GHz Doherty Power Amplifier in CMOS. IEEE Microwave and Wireless Components Letters, 28(5), 1–3. https://ieeexplore.ieee.org/document/8322404/

Paek, J., Kim, D., Bang, J., Baek, J., Choi, J., Nomiyama, T., & Han, J. (2022). Single transformer-based compact Doherty power amplifiers for 5G RF phased-array ICs. IEEE Journal of Solid-State Circuits, 57(5), 1267–1279. https://doi.org/10.1109/JSSC.2022.3148044

Pandey, R. K., & Pandey, S. K. (2020). Analyzing the Performance of 7nm FinFET Based Logic Circuit for the Signal Processing in Neural Network. 2020 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2020, February 2021, 136–140. https://doi.org/10.1109/RAICS51191.2020.9332500

Pang, J., Li, Y., Li, M., Zhang, Y., Zhou, X. Y., Dai, Z., & Zhu, A. (2020). Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 68(5), 1741–1753. https://doi.org/10.1109/TMTT.2019.2963868

Park, B., Kim, D., Kim, S., Cho, Y., Kim, J., Kang, D., Jin, S., Moon, K., & Kim, B. (2016). High-Performance CMOS Power Amplifier with Improved Envelope Tracking Supply Modulator. IEEE Transactions on Microwave Theory and Techniques, 64(3), 798–809. https://doi.org/10.1109/TMTT.2016.2518659

Paul, S., Debnath, S., Mandal, D. K., & Mahato, B. (2023). Single Phase Novel H-Type Multilevel Inverter Topology with Optimal Reduction of Power Electronic Devices. International Journal of Experimental Research and Review, 36, 347–358. https://doi.org/10.52756/ijerr.2023.v36.031

Razavieh, A., Zeitzoff, P., & Nowak, E. J. (2019). Challenges and Limitations of CMOS Scaling for FinFET and beyond Architectures. IEEE Transactions on Nanotechnology, 18, 999–1004. https://doi.org/10.1109/TNANO.2019.2942456

Saed, Z., & Khaleel, K. (2022). Design of class-E Power Amplifier (PA) with minimum harmonious termination for Cellular phones. Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 2–8. https://doi.org/10.4108/eai.7-9-2021.2314881

Sajedin, M., Elfergani, I. T. E., Rodriguez, J., Abd-Alhameed, R., & Barciela, M. F. (2019). A survey on RF and microwave doherty power amplifier for mobile handset applications. Electronics (Switzerland), 8(6). https://doi.org/10.3390/electronics8060717

Sakata, S., Lanfranco, S., Kolmonen, T., Piirainen, O., Fujiwara, T., Shinjo, S., & Asbeck, P. (2017). An 80MHz modulation bandwidth high efficiency multi-band envelope-tracking power amplifier using GaN single-phase buck-converter. IEEE MTT-S International Microwave Symposium Digest, 1854–1857. https://doi.org/10.1109/MWSYM.2017.8059016

Saritha, M., Rani, M. J., & Anand, M. (2019). Performance of Efficient CMOS Power Amplifier for ISM Band Applications. International Journal of Innovative Technology and Exploring Engineering, 9(2), 4579–4584. https://doi.org/10.35940/ijitee.b9022.129219

Singh, S., & Malik, J. (2021). Review of efficiency enhancement techniques and linearization techniques for power amplifier. International Journal of Circuit Theory and Applications, 49(3), 762–777. https://doi.org/10.1002/cta.2956

Su, G., Wan, C., Chen, D., Gao, X., & Sun, L. (2019). A 129.5-151.5GHz Fully Differential Power Amplifier in 65nm CMOS. 2019 IEEE MTT-S International Wireless Symposium, IWS 2019 - Proceedings, 1–3. https://doi.org/10.1109/IEEE-IWS.2019.8803888

Tochou, G., Cathelin, A., Frappe, A., Kaiser, A., & Rabaey, J. (2022). Impact of Forward Body-Biasing on Ultra-Low Voltage Switched-Capacitor RF Power Amplifier in 28 nm FD-SOI. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1), 50–54. https://doi.org/10.1109/TCSII.2021.3088996

Tripathi, S. L., Singh, D. K., Padmanaban, S., & Raja, P. (2021). Design and Development of Efficient Energy Systems. Design and Development of Efficient Energy Systems, 1–354. https://doi.org/10.1002/9781119761785

Varshney, P., Singh, R. P., & Jain, R. K. (2024). Performance Analysis of Millimeter-Wave Propagation Characteristics for Various Channel Models in the Indoor Environment. International Journal of Experimental Research and Review, 44, 102–114. https://doi.org/10.52756/ijerr.2024.v44spl.009

Vashishtha, V., & Clark, L. T. (2021). Comparing bulk-Si FinFET and gate-all-around FETs for the 5 nm technology node. Microelectronics Journal, 107(September 2020), 104942. https://doi.org/10.1016/j.mejo.2020.104942

Vasjanov, A., & Barzdenas, V. (2018). A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks. Electronics (Switzerland), 7(11), 1–17. https://doi.org/10.3390/electronics7110271

Wang, D., Xie, H., Thomas, L., Koppal, S., & Ding, Y. (2020). A Low-Voltage , Low-Current , Digital-Driven MEMS Mirror for Low-Power LiDAR. 4(8), 6–9.

Waykole, S., & Bendre, V. S. (2018). Performance Analysis of Classical Two Stage Opamp Using CMOS and CNFET at 32nm Technology. Proceedings - 2018 4th International Conference on Computing, Communication Control and Automation, ICCUBEA 2018, 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697461

Woo, J. L., Park, S., Kim, U., & Kwon, Y. (2014). Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3452–3464. https://doi.org/10.1109/TMTT.2014.2364831

Woo, J. L., Park, S., & Kwon, Y. (2015). A wideband envelope-tracking CMOS linear transmitter without digital predistortion. Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium, 2015-Novem, 367–370. https://doi.org/10.1109/RFIC.2015.7337781

Yamaguchi, Y., Nakatani, K., & Shinjo, S. (2020). A Wideband and High Efficiency Ka-band GaN Doherty Power Amplifier for 5G Communications. 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium, BCICTS 2020, 28–31. https://doi.org/10.1109/BCICTS48439.2020.9392982

Yu, Q., Yeh, Y. S., Garret, J., Koo, J., Morarka, S., Rami, S., Liu, G., & Lee, H. J. (2020). An E-Band power amplifier using high power RF device with hybrid work function and oxide thickness in 22nm low-power finfet. IEEE MTT-S International Microwave Symposium Digest, 2020-Augus(August), 999–1002. https://doi.org/10.1109/IMS30576.2020.9224055

Zahid, M. N., Jiang, J., Lu, H., Khan, S., & Zhang, H. (2021). An Optimal Design of High Output Power CMOS Class e Power Amplifier with Broadband Matching for RFID Applications. Journal of Physics: Conference Series, 1746(1). https://doi.org/10.1088/1742-6596/1746/1/012089

Zhang, H., Lan, Y., Qiu, S., Min, S., Jang, H., Park, J., Gong, S., & Ma, Z. (2021). Flexible and Stretchable Microwave Electronics: Past, Present, and Future Perspective. Advanced Materials Technologies, 6(1). https://doi.org/10.1002/admt.202000759

Published

2024-12-30

How to Cite

Gangadharan, S., Khanam, R., & Thangasamy, V. (2024). A Study of RF Power Amplifiers for 5G and Future Generation Mobile Communication: Can FinFET Replace CMOS?. International Journal of Experimental Research and Review, 46, 222–239. https://doi.org/10.52756/ijerr.2024.v46.018

Issue

Section

Articles