Graphene: the magic carbon derived biological weapon for human welfare

  • Arnob Chakrovorty 1Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Banani Bhattacharjee Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Rishita Dey Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Asmita Samadder Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Sisir Nandi Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
Keywords: Anti-cancer, anti-diabetic, graphene, graphene oxide (GO), therapeutic management

Abstract

Graphene plays an etiologic role for the new edge drug designing in the area of therapeutic management of myriads of diseases. Several researchers have experimentally validated the use of graphene and its derivative either in chemical form or in their nano-form to provide a longer and better life to the patients suffering from cancer, diabetes, etc. In this review, we have tried to focus on the literature to understand molecular docking-based role of graphene as an anti-cancer and anti-diabetic therapeutic tool which is very pertinent in the extensive arena of pharmacology, from pharmacovigilance to pharmacodynamics and kinetics, that ameliorates and concords with the modern scientific approaches of disease management.

References

Ahmad, S. (1999). Carbon nanostructures fullerenes and carbon nanotubes. IETE Tech. Rev. 16(3-4): 297-310.

Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R. and De Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nan-oelectronics. J. Phys. Chem. B. 108(52): 19912-19916.

Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C. and de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science. 312(5777): 1191-1196.

Bitounis, D., Ali-Boucetta, H., Hong, B. H., Min, D. H. and Kostarelos, K. (2013). Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25: 2258–2268.

Bo, X., Bai, J., Yang, L. and Guo, L.P. (2011). The nanocomposite of Pt Pd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose. Sens. Actuators B: Chem. 157(2): 662-668.

Chen, X. L., Pan, H. B., Liu, H. F. and Du, M. (2010). Nonenzymatic glucose sensor based on flower-shaped Au@ Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim. Acta. 56(2): 636-643.

Choudhary, A. K. (2012). Fullerene chemistry an overview.Ind. J. Res. 6: 72.

Chung, C., Kim, Y. K., Shin, D., Ryoo, S.-R., Hong, B. H. and Min, D. H. (2013). Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46(10): 2211–2224.

Compton, O. C. and Nguyen, S.T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 6(6): 711–723.

Delgado, J. L., Herranz, M. A. and Martin, N. (2008).The nanoforms of carbon. J. Mater. Chem.18 (13): 1417-1426.

Diederich, F. and Whetten, R. L. (1992). Beyond C60: The higher fullerenes. Acc. Chem. Res. 25(3): 119-126.

Diederich, F., Ettl, R., Rubin, Y., Whetten, R. L., Beck, R., Alvarez, M. and Koch, A. (1991). The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C700, an oxide of D5h-C70. Science. 252(5005): 548-551.

Dresselhaus, M. S., Dresselhaus, G. and Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier.

Ergun, S. (1968). Structure of carbon. Carbon. 6: 141–159.

Evans, J. W., Thiel, P. A. and Bartelt, M. C. (2006). Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur. Sci. Rep. 61(1-2): 1–128.

Forbeaux, I., Themlin, J. M. and Debever, J. M. (1998). Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B.162: 406-412.

Gao, W. (2015). The Chemistry of Graphene Oxide in Graphene Oxide. Springer, Berlin. Pp. 61–95.

Geim, A. K. and Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals. Pp. 11-19.

Iijima, S. (1991). Helical microtubules of graphitic carbon.Nature. 354(6348): 56-58.

Jiang, L. C. and Zhang,W. D. (2010).A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25(6): 1402-1407.

Jiang, X.Y., Wu, Y.H., Mao, X.Y., Cui, X.J. and Zhu, L. D.(2011). Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite. Sens. Actuators B: Chem. Pp. 153-158.

Kademani, B. S., Kalyane, V. L. and Kumar, V. (2002). Scientometric portrait of Nobel laureate Harold W. Kroto. SRELS J. Info. Mana. 39(4): 409-434.

Kim, H., Lee, D., Kim, J., Kim, T. I. and Kim, W. J. (2013). Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano. 7: 6735–6746.

Krishnan, S. K., Singh, E., Singh, P., Meyyappan, M. and Nalwa, H. S. (2019).A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC. Adv. 9: 8778-8881.

Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. and Smalley, R. E. (1985). C 60: buckminsterfullerene. Nature. 318 (6042): 162-163.

Kuila, T., Bose, S., Mishra, A. K.,Khanra, P., Kim, N. H. and Lee, J. H. (2012). Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57(7): 1061-1105.

Landau, L. D. (1937). Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion. 11: 26–35.

Land, T. A., Michely, T., Behm, R. J., Hemminger, J. C. and Comsa, G. (1992). STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3): 261-70.

Ling, X., Shen, Y., Sun, R., Zhang, M., Li, C., Mao, J., Xing, J., Sun, C. and Tu, J. (2015). Tumor-targeting delivery of hyaluronic acid-platinum(IV) nanoconjugate to reduce toxicity and improve survival. Polym. Chem-Uk. 6: 1541–1552.

Monthioux, M. and Kuznetsov, V. L. (2006). Who should be given the credit for the discovery of carbon nanotubes? Carbon. 44(9): 1621-1623.

Nagashima, A., Nuka, K., Itoh, H., Ichinokawa, T., Oshima, C. and Otani, S. (1993). Electronic states of monolayer graphite formed on TiC (111) surface. Surf. Sci. 291(1-2): 93-98.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A. (2004) Electric field effect in atomically thin carbon films. Science. 306(5696): 666-669.

Pan, D., She, W., Guo, C., Luo, K., Yi, Q. and Gu, Z. (2014). PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials. 35(38): 10080-10092.

Park, S. and Ruoff, R.S. (2009). Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4): 217–224.

Partoens, B. and Peeters, F. M. (2006). From graphene to graphite: Electronic structure around the K point. Phys. Rev. B. 74(7): 075404.

Peierls, R. E. (1935). Quelques proprietes typiques des corpsessolides. Ann. I. H. Poincare. 5(3): 177–222.

Pei, X., Zhu, Z., Gan, Z.,Chen, J., Zhang, X., Cheng, X., Wan, Q. and Wang, J. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports. 10(1): 1-15.

Pereira, V. M., Neto, A. C. H. and Peres, N. M. R. (2009).Tight binding approach to uniaxial strain in graphene. Phys. Rev. B. 80(4): 045401.

Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stockli, T. N., Burnham, A. and Forro, L. (1999). Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5): 944.

Smalley, R. E. (1997). Discovering the fullerenes. Rev. Mod. Phys. 69(3): 723.

Sumaryada, T., Muhammad, S. G., Salahuddin, P., Sugianto, A. and Akhiruddin, M. (2019). A Molecular Interaction Analysis Reveals the Possible Roles of Graphene Oxide in a Glucose Biosensor. Biosensors. 9(1): 18.

Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug. Discov. 13: 813–827.

Venables, J. A., Spiller, G. D. T. and Hanbucken, M. (1984). Nucleation and growth of thin films. Rep. Prog. Phys. 47: 399–459.

Walker, P. L. and Thrower, P. A. (1975) Chemistry & Physics of Carbon. CRC Press.

Wang, X., Hu, C. G., Liu, H., Du, G. J., He, X. S. and Xi, Y. (2010). Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B: Chem. 144(1): 220-225.

Zhu, H., Lu, X. Q., Li, M. X., Shao, Y. H. and Zhu, Z. W. (2009). Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta. 79(5): 1446-1453.

Published
2021-08-30
How to Cite
Chakrovorty, A., Bhattacharjee, B., Dey, R., Samadder, A., & Nandi, S. (2021). Graphene: the magic carbon derived biological weapon for human welfare. International Journal of Experimental Research and Review, 25, 9-17. https://doi.org/10.52756/ijerr.2021.v25.002
Section
Articles