A brief overview on role of graphene based material in therapeutic management of inflammatory response signalling cascades

  • Ruchira Das Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Priyanka Sow Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Sudatta Dey Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
  • Asmita Samadder Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia-741235, India
Keywords: Anti-inflammatory, graphene, graphene oxide, Graphene quantum dots, signaling factors

Abstract

Graphene is a novel, sp2 carbon atoms bonded, two-dimensional nano-material. Due to their favorable electronic, thermal, optical, and mechanical property, graphene and its derivatives, like graphene oxide (GO) and graphene quantum dots (GQDs) are used in widespread applications. The outstanding potentials of these compounds in the field of nanoelectronics, composite materials, sensors, energy technology etc helped in the rapid development in their functionalization, modulatory effects on various systems of our body. GQDs has been suggested as a new nanomaterial with improved biocompatibility, biodegradability, water solubility and considerably low cytotoxic effects in in vivo models, and are applicable for altering immune responses based on quantum confinement and edge effect properties. The review particularly elucidates the mechanistic approach by which graphene and/ or its derivatives and/ or their nano-compound aid in therapeutic management against myriads of immunological perspectives. GQDs have unique physiochemical properties with carbon sheets showcases out-standing biological response against immunological interventions by altering the activities of t-cell lymphocytes. On the contrary GO plays a vital role in eliciting inflammatory signaling factors by controlling proinflammation and an anti-inflammatory response. Therefore, this review shall help the readers to have an overview of the biomedical application of graphene and its derivatives to design target specific drugs to regulate the immune response based prognosis andcure.

References

Amiel, E., Everts, B., Freitas, T. C., King, I. L., Curtis, J. D., Pearce, E. L. and Pearce, E. J. (2012). Inhibition of Mechanistic Target of Rapamycin Promotes Dendritic Cell Activation and Enhances Therapeutic Autologous Vaccination in Mice. The Journal of Immunology. 189(5): 2151–2158.

Atri, C., Guerfali, F. and Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences. 19: 1801.

Banerjee, P. P., Bandyopadhyay, A., Mondal, P., Mondal, M. K., Chowdhury, P., Chakraborty, A., Sudarshan, M., Bhattacharya, S. and Chattopadhyay, A. (2019). Cytotoxic effect of graphene oxide-functionalized gold nanoparticles in human breast cancer cell lines. Nucleus. 62: 243–250.

Bhattarai, L. N. (2013). Graphene: A Peculiar Allotrope Of Carbon. Himalayan Physics. 3: 87.

Carreño, L. J., Riedel, C. A. and Kalergis, A. M. (2010). Induction of Tolerogenic Dendritic Cells by NF-κB Blockade and Fcγ Receptor Modulation. Suppression and Regulation of Immune Responses. 339–353.

Chen, F., Gao, W., Qiu, X., Zhang, H., Liu, L., Liao, P., Fu, W. and Luo, Y. (2017). Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers in Laboratory Medicine. 1(4): 192–199.

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9: 7204-7218.

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9: 7204-7218.

Croasdell, A., Duffney, P. F., Kim, N., Lacy, S. H., Sime, P. J. and Phipps R. P. (2015). PPAR and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Research. ID549691: 1-20.

Cunard, R., Ricote, M., DiCampli, D., Archer, D. C., Kahn, D. A., Glass, C. K. and Kelly, C. J. (2002). Regulation of Cytokine Expression by Ligands of Peroxisome Proliferator Activated Receptors. The Journal of Immunology. 168: 2795– 2802.

D'Andrea, A., Aste-Amezaga, M., Valiante, N.M., Ma, X., Kubin, M. andTrinchieri, G. (1993). Interleukin 10 (IL-10) inhibits human lymphocyte interferon gammaproduction by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. Journal of Experimental Medicine. 178: 1041–1048.

Daseke, M. J., Tenkorang-Impraim, M. A. A., Ma, Y., Chalise, U., Konfrst, S. R., Garrett, M. R., DeLeon-Pennell, K. Y. and Lindsey, M. L. (2020). Exogenous IL-4 shuts off pro-inflammation in neutrophils while stimulating anti-inflammation in macrophages to induce neutrophil phagocytosis following myocardial infarction. Journal of Molecular and Cellular Cardiology. 145: 112-121.

Diez-Orejas, R., Feito, M. J., Cicuéndez, M., Casarrubios, L., Rojo, J. M. and Portolés, M. T. (2018). Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids and Surfaces B: Biointerfaces. 171: 250–259.

Ding, J., Venkatesan, R., Zhai, Z.,Muhammad, W., Nakkala, J. R. and Gao, C. (2020). Micro- and nanoparticles-based immunoregulation of macrophages for tissue repair and regeneration. Colloids and Surfaces B: Biointerfaces. 192: 111075.

Ding, Z., Luo, N., Yue, H., Gao, Y., Ma, G. and Wei, W. (2020). In Vivo Immunological Response of PEGylated Graphene Oxide via Intraperitoneal Injection. Journal of Materials Chemistry. B 2012: 1-3.

Driessler, F., Venstrom, K., Sabat, R., Asadullah, K. and Schottelius, A. J. (2004). Molecular mechanisms of interleukin10-mediated inhibition of NF-kappaB activity: a role for p50. Clinical and Experimental Immunology. 135: 64–73.

Du, J., Feng, B., Dong, Y., Zhao, M. and Yang, X. D. (2020). Vanadium coordination compounds loaded on Graphene Quantum Dots (GQD) exhibit improved pharmaceutical properties and enhanced anti-diabetic effects. Nanoscale. 12: 9219-9230.

Dudek, I., Skoda, M., Jarosz, A. and Szukiewicz, D. (2016). The Molecular Influence of Graphene and Graphene Oxide on the Immune System Under In Vitro and In Vivo Conditions. ArchivumImmunologiae et Therapiae Experimentalis. 64: 195-215.

Driessler, F., Venstrom, K., Sabat, R., Asadullah, K. and Schottelius, A. J. (2004). Molecular mechanisms of interleukin10-mediated inhibition of NF-κB activity: a role for p50. Clinical and Experimental Immunology. 135: 64-73.

Fan, H., Yu, X., Wang, K., Yin, Y., Tang, Y., Tang, Y. and Liang, X. (2019). Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. European Journal of Medicinal Chemistry. 182: 111620.

Fang, C., Gu, L., Smerin, D., Mao, S. and Xiong, X. (2017). The Interrelation between Reactive Oxygen Species and Autophagy in Neurological Disorders. Oxid. Med. Cell. Longev. 1–16.

Faridi, A., Sun, Y. and Mortimer, M. (2019). Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. Nano Research. 12:2827– 2834.

Farmer, P. and Pugin, J. (2000). b-Adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkB/NF-kB pathway. American Journal of Physiology-Lung Cellular and Molecular Physiology. 279: L675–L682.

Feito, M. J., Diez-Orejas, R., Cicuéndez, M., Casarrubios, L., Rojo, J. M. and Portolés, M. T. (2019). Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids and Surfaces B: Biointerfaces. 176: 96–105.

Ghislat, G. and Lawrence, T. (2018). Autophagy in dendritic cells. Cell Mol. Immunol. 944–952. Shen, H., Zhang, L., Liu, M., Zhang, Z. 2012. Biomedical Applications of Graphene. Theranostics. 2(3): 283– 294.

Han, J., Kim, Y. S., Lim, M. Y., Kim, H. Y., Kong, S., Kang, M., Choo, Y. W., Jun, J. H., Ryu, S., Jeong, H. Y., Park, J., Jeong, G. J., Lee, J. C., Eom, G. H., Ahn, Y. and Kim, B. S. (2018). Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS Nano. 12: 1959–1977.

Hoyle, C., Rivers-Auty, J., Lemarchand, E., Vranic, S., Wang, E., Buggio, M., Rothwell, N. J., Allan, S. M., Kostarelos K. and Brough, D. (2018). Small, thin graphene oxide is anti-inflammatory activating nuclear factor erythroid 2- related factor 2 via metabolic reprogramming. ACS Nano. 12: 11949– 11062.

Iruretagoyena, M. I. (2006). Inhibition of Nuclear Factor- B Enhances the Capacity of Immature Dendritic Cells to Induce Antigen-Specific Tolerance in Experimental Autoimmune Encephalomyelitis. Journal of Pharmacology and Experimental Therapeutics. 318(1): 59–67.

Ju, Z., Su, M., Hong, J., La Kim, E. and Jung, J. H. (2020). Anti-inflammatory effects of an optimized PPAR-γ agonist via NF-κB pathway inhibition. Bioorganic Chemistry. 96: 103611.

Khajebishak, Y., Payahoo, L., Hamishehkar, H., Alivand, M., Alipour, M., Solhi, M. and Alipour, B. (2019). Effect of pomegranate seed oil on the expression of PPAR-γ and pro-inflammatory biomarkers in obese type 2 diabetic patients. Nutrition & Food Science. 49: 854-865.

Korbecki, J., Bobiński, R. and Dutka, M., (2019) Self-regulation of the infammatory response by peroxisome proliferator-activated receptors. Inflammation Research. 68: 443–458.

Kumar, Y. R., Deshmukh, K., Sadasivuni, K. K. and Pasha, S. K. K. (2020). Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances. 10(40): 23861–23898.

Kytikova, O. Y., Perelman, J. M., Novgorodtseva, T. P., Denisenko, Y. K., Kolosov, V. P., Antonyuk, M. V. and Gvozdenko, T. A. (2020). Peroxisome ProliferatorActivated Receptors as a Therapeutic Target in Asthma. PPAR Research. 2020:1–18.

Lee, B-. C., Lee, J. Y., Kim, J., Yoo, J. M., Kang, I., Kim, J. J., Shin, N., Kim, D. J., Choi, S. W., Kim, D., Hong B. H. and Kang, K. S. (2020). Graphene quantum dots as antiinflammatory therapy for colitis. Science Advances. 6(18): eaaz2630.

Li, K., Zhao, X., Wei, G. and Su, Z. (2018). Recent Advances in the Cancer Bioimaging with Graphene Quantum Dots. Current Medicinal Chemistry. 25(25): 2876– 2893.

Li, Y., Liu, Y., Fu, Y., Wei, T., Le Guyader, L., Gao, G., Liu, R-. S., Chang, Y. Z. and Chen, C. (2012). The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 33(2): 402–411.

Lin, T., Pajarinen, J., Nabeshima, A., Lu, L., Nathan, K., Yao, Z. and Goodman, S. B. (2017). Establishment of NF-κB sensing and interleukin-4 secreting mesenchymal stromal cells as an “ondemand” drug delivery system to modulate inflammation. Cytotherapy. 19: 1025–1034.

Liu, J. H., Yang, S. T., Wang, H., Chang, Y., Cao, A., and Liu, Y. (2012). Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 7: 1801– 1812.

Liu, T., Zhang, L., Joo, D., Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2: 17023.

Ma, J., Liu, R., Wang, X., Liu, Q., Chen, Y., Valle, R. P., Zuo, Y.Y., Xia, T., Liu, S. (2015). Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano. 9: 10498–10515.

Malik, N., Arfin, T. and Khan, A. U. (2019). Graphene nanomaterials: chemistry and pharmaceutical perspectives. Nanomaterials for Drug Delivery and Therapy. 373–402.

Martins, G. R., Gelaleti, G. B., Moschetta, M. G., Maschio-Signorini, L. B. and Zuccari, D. A. P. de C. (2016). Proinflammatory and Anti-Inflammatory Cytokines Mediated by NF-κB Factor as Prognostic Markers in Mammary Tumors. Mediators of Inflammation. 2016: 1–10.

Miao, X., Leng, X. and Zhang, Q. (2017). The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. International Journal of Molecular Sciences 18: 336.

Mildner, A., Jung, S. (2014). Development and Function of Dendritic Cell Subsets. Immunity. 40(5): 642–656.

Mu, Q., Su, G., Li, L., Gilbertson, B. O., Yu, L. H., Zhang, Q., Sun, Y. P. and Yan, B. (2012). Size-Dependent Cell Uptake of Protein-Coated Graphene Oxide Nanosheets. ACS Applied Materials & Interfaces. 4(4): 2259–2266.

Mukherjee, S.P., Kostarelos, K. and Fadee, B. (2017). Cytokine Profiling of Primary Human Macrophages Exposed to Endotoxin-Free Graphene Oxide: SizeIndependent NLRP3 Inflammasome Activation. Advanced Healthcare Materials. 7: 1700815.

Natarajan, C. and Bright, J. (2002). Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immunology. 3: 59–70.

Pei, X., Zhu, Z. and Gan, Z. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports. 10: 2717.

Podolska, M. J., Barras, A., Alexiou, C., Frey, B., Gaipl, U., Boukherroub, R., Szunerits, S., Janko C. and Muñoz, L. E. (2020). Graphene Oxide Nanosheets for Localized Hyperthermia— Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death. Cells. 9: 776.

Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S. and Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry. 8(2): 123– 137.

Qin, Y., Zhou, Z. W., Pan, S-. T., He, Z. X., Zhang, X., Qiu, J. X., Duan, W., Yang, T. and Zhou, S. F. (2015). Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-kB mediated signaling pathways in activated THP-1 macrophages. Toxicology. 327: 62–76.

Qiu, Y., Wang, Z., Owens, A. C. E., Kulaots, I., Chen, Y., Kane, A. B. and Hurt, R. H. (2014). Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 6: 11744–11755.

Raker, V. K., Domogalla, M. P. and Steinbrink, K. (2015). Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man. Front. Immunol. 6: 569.

Sansbury, B. E. and Spite, M. (2016). Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circulation Research. 119: 113–130.

Schülke, S. (2018). Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses. Frontiers in Immunology. 9: 455.

Sukhbaatar, N., Hengstschläger, M. and Weichhart, T. (2016). mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function. Trends in Immunology. 37(11): 778–789.

Terhune, J., Berk, E. and Czerniecki, B. (2013). Dendritic Cell-Induced Th1 and Th17 Cell Differentiation for Cancer Therapy. Vaccines. 1(4): 527–549.

Tian, P., Tang, L., Teng, K. S. and Lau, S. P. (2018). Graphene quantum dots from chemistry to applications. Materials Today Chemistry. 10: 221–258.

Tomić, S., Janjetović, K., Mihajlović, D., Milenković, M., Kravić-Stevović, T., Marković, Z., Todorović-Marković, B., Spitalskye, Z., Micusike, M., Vučević, D., Čolić, M. and Trajković, V. (2017). Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials. 146: 13–28.

Tonelli, F. M., Goulart, V. A., Gomes, K. N., Ladeira, M. S., Santos, A. K., Lorençon, E., Ladeira, L. O. and Resende, R. R. (2015). Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine. 10(15): 2423– 2450.

Tosic, J., Stanojevic, Z., Vidicevic, S., Isakovic, A., Ciric, D., Martinovic, T., Kravic-Stevovic, T., Bumbasirevic, V., Paunovic, V., Jovanovic, S., Todorovic-Markovic, B., Markovic, Z., Danko, M., Micusik, M., Spitalsky, Z. and Trajkovic, V. (2018). Graphene quantum dots inhibit T cellmediated neuroinflammation in rats. Neuropharmacology. 146: 95-108.

Tucureanu, M. M., Rebleanu, D., Constantinescu, C. A., Deleanu, M., Voicu, G., Butoi, E., Caline, M. and Manduteanu, I. (2017). Lipo-polysaccharide-induced inflammation inmonocytes / macrophages is blocked by liposomal delivery of Gi-protein inhibitor. International Journal of Nanomedicine. 13: 63–76.

Wang, Y., Li, Z., Wang, J., Li, J. and Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology. 29(5): 205–212.

Wierzbicki, M., Sawosz, E. and Strojny, B. (2018). NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Scientific Reports. 8: 14733.

Woodward, E. A., Prêle, C. M., Nicholson, S. E., Kolesnik, T. B. and Hart, P. H. (2010). The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology. 131: 118–127.

Yang, K., Feng, L. and Liu, Z. (2016).Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews. 105: 228–241.

Yang, K., Gong, H., Shi, X., Wan, J., Zhang, Y. and Liu, Z. (2013). In vivo biodistribution and toxicology of functionalized nanographene oxide in mice after oral and intraperitoneal administration. Biomaterials. 34(11): 2787–2795.

Zhan, L., Zhang, Y., Ma, C., Wang, Z., Zhou, Q., Sun, S., Ma, P., Lv, L., Jiang and Wang, X. (2020). Large-sized Graphene Oxide Synergistically Enhance Parenchymal Hepatocyte IL-6 Expression Monitored by Dynamic Imaging. Nanoscale. 12: 8147-8158.

Published
2020-04-30
How to Cite
Das, R., Sow, P., Dey, S., & Samadder, A. (2020). A brief overview on role of graphene based material in therapeutic management of inflammatory response signalling cascades. International Journal of Experimental Research and Review, 21, 25-36. https://doi.org/10.52756/ijerr.2020.v21.004
Section
Articles

Most read articles by the same author(s)