Effect of temperature variation on disease proliferation of common fishes in perspective of climate change

  • Anusaya Mallick ENVIS RP on Environmental Biotechnology, University of Kalyani, West Bengal, India
  • Ashis Kumar Panigrahi Department of Zoology, University of Kalyani, Kalyani, West Bengal, India
Keywords: Climate change, diseases, fish, global warming, pathogen

Abstract

Meteorological variations and global warming frequently produce serious losses in fishing stocks and fish production. The rate of fish production depends on climatic variation and demand more prudent management of natural sources, attention to technological action and more specific knowledge of the fish and the emergent pathogens. Temperature affects the development of parasites and pathogenic bacteria and may also have effects on the resistance of fish to disease. Certain environmental conditions are considered door openers to opportunistic pathogens and important initiators of stress. Global warming and worsening of other environmental parameters causes an alteration of the immune-response, with a reduction in the resistance of fish and increases the occurrence of various diseases of fish. Climate change cans increase pathogen development and survival rates, disease transmission, and host susceptibility. Disease in fishes is caused by the infection of various types of bacteria, viruses and fungi. This type of disease has been noticed in many states of India.

References

Adhikari, S., Keshav, C. A., Barlaya, G., Rathod, R., Mandal, R. N., Ikmail, S. and Sarkar, S. (2018). Adaptation and Mitigation Strategies of Climate Change Impact in Freshwater Aquaculture in some states of India. Journal of Fisheries Sciences. 12(1): 16-21.

Agriculture, Fisheries and Conservation Department (2009). Prevention and treatment of fish diseases. Good Aquaculture Practices Series. Aquaculture Fisheries Division, AFCD, Hong Kong. 4: 32.

Aoki, T. (1974). Studies of drug resistant bacteria isolated from water of carp ponds and intestinal tracts of carp (in Japanese). Bulletin of Japanese Society of Science and Fisheries. 40: 247-254.

Barry, T., Powell, R. and Gannon F, (1990). A general method to generate DNA probes for microorganisms. Biotechnology. 8: 233 - 236.

Battin, J., Wiley, M. W., Ruckelshaus, M. H., Palmer, R. N,. Korb, E., Bartz, K. K. and Imaki, H. (2007). Projected impacts of climate change on salmon habitat restoration. Proc. Natl. Acad. Sci. USA. 104: 6720-6725.

Bettge, K., Segner, H., Burki, R., Schmidt-Posthaus, H. and Wahli, T. (2009a). Proliferative kidney disease (PKD) of rainbow trout: temperatureand time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney. Parasitology. 136: 615–625.

Bettge, K., Wahli, T., Segner, H. and SchmidtPosthaus, H. (2009b). Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution. Diseases of Aquatic Organisms. 83: 67–76.

Bowden, T. J., Thompson, K. D., Morgan, A. L., Gratacap, R. M. L. and Nikoskelainen, S. (2007). Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol. 22: 695–706.

Bowser, P. R. and Buttner, J. K. (1993). General fish health management. NRAC Bulletin 111. Brander, K. M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences. 104(50): 19704–19714.

Bruneaux, M., Visse, M., Gross, R., Pukk, L., Saks, L. and Vasemägi, A. (2017). Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Functional Ecology. 31(1): 216-226.

Burkhardt-Holm, P., Giger, W., Guttinger, H., Ochsenbein, U., Peter, A. and Scheurer, K. (2005) Where have all the fish gone? Environmental Science & Technology. 39: 441A–447A.

Clifton-Hadley, R. S., Bucke, D. and Richards, R. H. (1987). A study of the sequential clinical and pathological changes during proliferative kidney disease in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Diseases. 10(5): 335-352.

Chakrabarti, R., Mansingh Rathore, R., Mittal, P. and Kumar, S. (2006). Functional changes in digestive enzymes and characterization of proteases of silver carp (male) and bighead carp (female) hybrid, during early ontogeny. Aquaculture. 253(1–4): 694–702.

Cochrane, K., De Young, C., Soto, D. and Bahri, T. (2009). Climate change implications for fisheries and aquaculture. FAO Fisheries and aquaculture technical paper: 530: 212.

Crane, M. and Hyatt, A. (2011). Viruses of fish: An overview of significant pathogens. Viruses. 3(11): 2025-2046.

Dorsch, M., Lane, D. and Stackebrandt, E. (1992). Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 42: 58 - 63.

Egusa, S. (1978). Infectious diseases of fish. Kouseisha Kouseikaku, (Tokyo). Pp. 554.

FAO. (2006). State of world aquaculture: 2006. FAO Fisheries Technical Paper. No. 500. Rome, FAO. Pp.134.

Francis, F. R. (2005). Introduction to fish health management. IFAS Extension. Fisheries and Aquatic Sciences Department University of Florida US CIR. 921: 1-4.

Gallana, M., Ryser-Degiorgis, M. P., Wahli, T. & Segner, H. (2013). Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Current Zoology. 59: 427–437.

Gay, M., Okamura, B. and De Kinkelin, P. (2001). Evidence that infectious stages of Tetracapsula bryosalmonae for rainbow trout Oncorhynchus mykiss are present throughout the year. Diseases of Aquatic Organisms. 46(1): 31-40.

Golam, K., Haroon Yousuf, A. K. and Dayanthi, N. (2017). Climate change impacts on tropical and temperate fisheries, aquaculture, and seafood security and implications-A review. Livestock Research for Rural Development. Pp.29.

Graham, P. H., Sadowsky, M. J., Keiser, H. H., Barnet, Y. M., Bradley, R. S., Cooper, J. E., De Ley, D. J., Jarvis, B. D. W., Roslycky, E. B., Strijdom, B. W. and Young, J. P. W. (1991). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. International Journal of Systematic Bacteriology. 41: 582-587.

Grisez, L. and Ollevier, F. (1995). Vibrio Listonella anguillarum infections in marine fish larvae culture. In: Lavens, P., Jaspers, E., Roelands, I. Eds. , Larvi ’91. Fish and crustacean larvae culture symposium. European Aquaculture Society, Gent. Special publication no. 24. Pp. 497.

Harris, K. K., Gupta, A. K. and Agarwal, S. M. (1992). Pathophysiology of epizootic ulcerative syndrome in Channa punctatus. J. Parasito. Appl. Animal Biol. 1: 125-130.

Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J., Hofmann, E. E., Lipp, E. K., Osterhaus, A. D. and Overstreet, R. M. (1999). Emerging marine diseases- climate links and anthropogenic factors. Science. 285: 1505-1510.

Hattenberger-Baudouy, A. M., Danton, M., Merle, G. and de Kinkelin, P. (1995). Epidemiologie de la necrose hbmatopoibtique infectieuse (NHI) des salmonides en France : suivi de l’infection naturelle par des techniques virologiques et serologiques et tentative d’eradication. Vet. Res. 26: 256-275. Hedrick, R., Kent, M., Rosemark, R. and Manzer, D. (1984). Occurrence of proliferative kidney disease (PKD) among Pacific salmon and steelhead trout. Bulletin of the European Association of Fish Pathologists. 4: 34–37.

Hossain, M. K., Islam, K. T., Hossain, M. D. and Rahman, M. H. (2013). Environmental impact assessment of fish diseases on fish production. Journal of Science Foundation. 9(1-2): 125-131.

Huizinga, H. W., Esch, G. W. and Hazen, T. C. (1979). Histopathology of red-sore disease (Aeromonas hydrophila) in naturally and experimentally infected largemouth bass Micropterus salmoides (Lacepede). J. Fish Dis. 2: 263-277.

Karvonen, A., Rintamäki, P., Jokela, J. and Valtonen, E. T. (2010). Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. International Journal for Parasitology. 40(13): 1483-1488.

Kita-Tsukamoto, K., Oyaizu, H., Nanba, K. and Simidu, U. (1993). Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. International Journal of Systematic Bacteriology. 43(1): 8-19.

Kumar, D., Mishra, B. and Dey, R. K. (1986a). Dropsy of Catla catla (Ham.) caused by a mixed infection of Aeromonas hydrophila and Myxospordian sp. Aquaculture Hungarica (Szarvas) 5: 107-112.

Kumar, D., Suresh, K., Dey, R. K. and Mishra, B. K. (1986b). Stress mediated columnaris disease in rohu, Labeo rohita (Hamilton). Journal of Fish Diseases. 9: 87-89.

Kumar, V., Roy, S., Barman, D. and Kumar, A. (2014). Immunoserological and molecular techniques used in fish disease diagnosis: A mini review. International Journal of Fisheries and Aquatic Studies. 1(3): 111-117.

La Patra, S. E., Lauda, K. A., Woolley, M. J. and Armstrong, R. (1993). Detection of naturally occurring coinfection of IHNV and IPNV in rainbow trout. Am Fish Soc/Fish Health Sect Newsl. 21: 9-10.

Lee, J. V., Shread, P., Furniss, A. L. and Bryant, T. N. (2002). Taxonomy and description of Vibrio uvialis sp. nov. (Synonym group F Vibrios, Group EF6). J Appl Bacteriol. 50: 73-94.

Manning, M. J. and Nakanishi, T. (1996). The specific immune system: cellular defenses. In: Iwama, G.K. and T., Nakanishi (eds), The fish immune system, Academic Press, London. pp 159–205.

Manohar, L., Shenoy, M. G., Chandramohon, K. C. and Reddy, T. K. K. (1976). A new bacterial fish pathogen causing skin disease in catfish, Clarias batrachus Lim. Current Research. 5: 76-77.

Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue scientifique et technique (International Office of Epizootics). 27(2): 467-484.

Marcogliese, D. J. (2008). The impact of climate change on the parasites and infectious diseases of aquatic animals. Revue Scientifique et Technique (International Office of Epizootics). 27: 467–484.

Mastan, S. A. and Ahmed, O. (2013). Bacterial kidney disease (BKD) in Indian Major Carp fishes, Labeo rohita (Ham.) and Cirrhinus mrigala (Ham.)-Natural occurrence and artificial challenge. Asian Journal of Pharmaceutical and Clinical Research. 6: 3.

McGarey, D. J., Milanesi, L., Foley, D. P., Reyes, B. J., Frye, L. C. and Lim, D. V. (1991). The role of motile aeromonads in the fish disease, ulcerative disease syndrome (UDS). Experientia Rev. 47: 441-444.

Mishra, S. S., Rakesh, D., Dhiman, M., Choudhary, P., Debbarma, J., Sahoo, S. N. and Mishra, C. K. (2017). Present Status of Fish Disease Management in Freshwater Aquaculture in India: State-of the-Art-Review. Journal of Aquaculture & Fisheries. 1: 3.

Ogunnoiki, G. A. M. (2009). Catfish Fish Disease (Nigerian Experience). Capacity Building on Fish Disease Control: Training Workshop for Fish Farmers Abuja Nigeria. Pp.131.

Okamura, B., Hartikainen, H., Schmidt-Posthaus, H. and Wahli, T. (2011). Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshwater Biology. 56: 735–753.

Otta, S. K., Karunasagar, I. and Karunasagar, I. (2003). Disease problems affecting fish in tropical environments. Journal of Applied Aquaculture. 13: 1045-4438.

Pal, J. and Pradhan, K. (1990). Bacterial involvement in ulcerative condition of air breathing fish from India. J. Fish Biol. 36: 333- 339.

Parry M. L., Canziani O. F., Palutikof J. P., van der Linden P. J. and Hanson C. E. (eds) (2007). Technical summary. In Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the 4th assessment report of the Intergovernmental Panel on Climate Change. (M.L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C.E. Hanson, eds). Cambridge University Press, Cambridge. Pp. 23-78.

Paull, S. H. and Johnson, P. T. J. (2014). Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk. Ecology Letters. 17: 445–453.

Pradhan, K., Pal, J. and Das, A. (1991). Ulcerative fish disease in Indian major carps: Isolation of bacteria from ulcers. Environ. Ecol. 9(2): 510- 515.

Pridgeon, J.W. and Klesius, P. H. (2012). Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews. 7(048): 16.

Rao, K. G., Mohan, C. V. and Seenappa, D. (1992). The use of chemotherapeutic agents in fish culture in India. In: Diseases in Asian Aquaculture I: Fish Health Section. Eds: M. Shariff, R. P. Subasinghe and J.R. Arthur. Asian. Fisheries Society, Manila. Pp. 505-513.

Roberts, R. J. (1978). Fish pathology. Bailliere Tindall, London. Sahoo, P. K., Mukherjee, S. C., Nayak, S. K. and Dey, S. (1998). Pathology of Dropsy in Indian major carp. Journal of Aquaculture. 6: 93-96.

Scavia, D., Field, J. C., Boesch, D. F., Buddemeier, R. W., Burkett, V., Cayan, D. R., Fogarty, M. and Harwell, M. (2002). Climate change impacts on US coastal and marine ecosystems. Estuaries. 25: 149-196.

Schindler, D.W. (2001). The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58: 18-29.

Sharma, J. G., Singh, S. P., Mittal, P. and Chakrabarti, R. (2016). Impact of Temperature Gradient on the Indian Major Carp, Catla catla Larvae. Proceedings of the National Academy of Sciences India Section B-Biological Sciences. 86(2): 269–273.

Shoots, Jr. E. B., Gaines, J. L., Martin, Jr. L. and Prestwood, A. K. (1972). Aeromonas induced deaths among fish and reptiles in an eutrophic inland lake. J. Am. Vet. Med. Assoc. 161: 603-607.

Snieszko, S. F. (1974). The effects of environmental stress on outbreaks of infectious diseases of Fishes. Journal of Fish Biology. 6: 197-208.

Sterud, E., Forseth, T., Ugedal, O., Poppe, T.T., Jørgensen, A. and Bruheim, T. (2007). Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Diseases of Aquatic Organisms. 77: 191–198.

Swain, P. and Nayak, S.K. (2003). Comparative sensitivity of different serological tests for seromonitoring and surveillance of Edwardsiella tarda infection of Indian major carps. Fish and Shellfish Immunology. 15: 333- 340.

Swain, P., Mishra, S. and Nayak, S. K. (2003). Bacterial gill disease in Indian major carps. Indian Council of Agriculture Research News. 9 (July-September). pp. 16-17.

Tops, S., Lockwood, W. and Okamura, B. (2006). Temperature-driven proliferation of Tetracapsuloides bryosalmonae in bryozoan hosts portends salmonid declines. Diseases of Aquatic Organisms. 70(3): 227-236.

Ventura, M. T. and Grizzle, J. M. (1988). Lesions associated with natural and experimental infections of Aeromonas hydrophila in channel catfish, Ictalurus punctatus (Rafinesque). J. Fish Dis. 11: 397 - 407.

Vernon, S. D., Shukla, S., Unger, E. R. and Reeves, W. C. (2002). Analysis of 16S rDNA sequences and circulating cell-free DNA concentration from plasma of a chronic fatigue syndrome and non fatigued subjects. Biomed Central Microbiol. 2: 39.

Viswanatha, B. S., Bhatta, R., & Shankar, K. M. (2014). An Economic Assessment of Fish and Prawn Health Management in Andhra Pradesh. Agricultural Economics Research Review. 27(1): 83-90.

Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173(2): 697-703.

Williams, L. and Rota, A. (2011). Impact of climate change on fisheries and aquaculture in the developing world and opportunities for adaptation. Fisheries Thematic paper. Winfield, I. J., Baigún, C., Balykin, P. A., Becker, B., Chen, Y., Filipe, A. F. and Kutsyn, D. N. (2016). International perspectives on the effects of climate change on inland fisheries. Fisheries. 41(7): 399-405.

Published
2018-08-30
How to Cite
Mallick, A., & Panigrahi, A. (2018). Effect of temperature variation on disease proliferation of common fishes in perspective of climate change. International Journal of Experimental Research and Review, 16, 40-49. https://doi.org/10.52756/ijerr.2018.v16.005
Section
Articles