Non-Invasive Near-Infrared-Based Optical Glucose Detection System for Accurate Prediction and Multi-Class Classification
DOI:
https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.012Keywords:
Glucose, machine learning, near-infrared (NIR), noninvasive, transmittance, reflectanceAbstract
One of the most common diseases around the world is diabetes. Intrusive methods involving blood samples via a finger prick are required to test for diabetes. These treatments are uncomfortable and prone to infection. Non-invasive testing is proposed as a solution to this concerning problem. To test the glucose levels of subjects, a shortwave near-infrared-based optical detection system with a 950 nm wavelength sensor in reflective mode is presented. The system collects the measured signal through voltage, transmittance, absorbance and reflections to estimate glucose. The relation between voltage and predicted glucose is evaluated from the absorbance, reflectance, and voltage for 575 samples. A Multiple linear regression (MLR) expression is used in the proposed method to enhance the accuracy. The proposed method achieves a coefficient of determination (R2) of 99% and a mean absolute derivative of 3.6 mg/dl in real-time data analysis with the sensor. The root mean square error (RMSE) is also calculated as 3.46 mg/dl. Three additional machine learning classifiers are employed to achieve high accuracy in multi-class classification. Adaboosting and Gaussian Naïve Bayes classifiers achieve an accuracy of 97% each. Furthermore, the system computes performance metrics such as precision, recall, and F1-score, and predicts the class on the test sample.
References
Abidin, M. T., Rosli, M. K., Shamsuddin, S. A., Madzhi, N. K., & Abdullah, M. F. (2013). Initial quantitative comparison of 940nm and 950nm infrared sensor performance for measuring glucose non-invasively. In 2013 IEEE, International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), pp. 1-6. https://doi.org/10.1109/ICSIMA.2013.6717938
Ali, A., Alrubei, M. A. T., Hassan, . L. F. M., Al-Ja’afari, M. A. M., & Abdulwahed, S. H. (2020). Diabetes diagnosis based on knn. IIUM Engineering Journal, 21(1), 175–181. https://doi.org/10.31436/iiumej.v21i1.1206
Anupongongarch, P., Kaewgun, T., O'Reilly, J. A., & Khaomek, P. (2019). Development of a non-invasive blood glucose sensor. International Journal of Applied Engineering Research, 12(1), 1-19.
Chandrasekhar, N., & Peddakrishna, S. (2023). Enhancing heart disease prediction accuracy through machine learning techniques and optimization. Processes, 11(4), 1210. https://doi.org/10.3390/pr11041210.
Chen, C., Zhao, X.L., Li, Z.H., Zhu, Z.G., Qian, S.H., & Flewitt, A. J. (2017). Current and emerging technology for continuous glucose monitoring. Sensors, 17(1), 182. https://doi.org/10.3390/s17010182.
Goodarzi, M., Sharma, S., Ramon, H., & Saeys, W. (2015). Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC Trends in Analytical Chemistry, 67, 147-158. https://doi.org/10.1016/j.trac.2014.12.005.
Gusev, M., Poposka, L., Guseva, E., Kostoska, M., Koteska, B., Simjanoska, M., Ackovska, N., & Stojmenski, A. (2020). Trends from minimally invasive to non-invasive glucose measurements. IEEE, In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). pp. 315-320. https://doi.org/10.23919/MIPRO48935.2020.9245402.
Haak, T., Hanaire, H., Ajjan, R., Hermanns, N., Riveline, J.P., & Rayman, G. (2017). Use of flash glucose-sensing technology for 12 months as a replacement for blood glucose monitoring in insulin-treated type 2 diabetes. Diabetes Therapy, 8, 573–586. https://doi.org/10.1007/s13300-017-0255-6
Heise, H.M. (2021). Medical Applications of NIR Spectroscopy. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds) Near-Infrared Spectroscopy. Springer, Singapore. pp. 437-473. https://doi.org/10.1007/978-981-15-8648-4_20
Hina, A., & Saadeh, W. (2022). Noninvasive blood glucose monitoring systems using near-infrared technology—A review. Sensors, 22(13), 4855. https://doi.org/10.3390/s22134855.
Jain, P., Joshi, A.M., & Mohanty, S.P. (2019). iGLU: An intelligent device for accurate noninvasive blood glucose-level monitoring in smart healthcare. IEEE Consumer Electronics Magazine, 9(1), 35-42. https://doi.org/10.1109/MCE.2019.2940855.
Jain, P., Maddila, R., & Joshi, A.M. (2019). A precise non-invasive blood glucose measurement system using NIR spectroscopy and Huber’s regression model. Optical and Quantum Electronics, 51, 1-5. https://doi.org/10.1007/s11082-019-1766-3.
Jintao, X., Liming, Y., Yufei, L., Chunyan, L., & Han, C. (2017). Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 250-254. https://doi.org/10.1016/j.saa.2017.02.032.
Larin, K. V., Eledrisi, M. S., Motamedi, M., & Esenaliev, R. O. (2002). Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects. Diabetes Care, 25, 2263–2267. https://doi.org/10.2337/diacare.25.12.2263
Lee, S.H., Kim, M.S., Kim, O.K., Baik, H.H., & Kim, J.H. (2019). Near-infrared light emitting diode based non-invasive glucose detection system. Journal of Nanoscience and Nanotechnology, 19(10), 6187-6191. https://doi.org/10.1166/jnn.2019.17005.
Miriyala, N.P., Kottapalli, R. L., Miriyala, G. P., Lorenzini, G., Ganteda, C., & Bhogapurapu, V. A.R. (2022). Diagnostic analysis of diabetes mellitus using machine learning approach. Revue d’Intelligence Artif., 36, 347–352. https://doi.org/10.18280/ria.360301
Montgomery, D.C., Peck, E.A., & Vining, G.G. (2021). Introduction to linear regression analysis (6th ed.). John Wiley & Sons.
Pai, P.P., Sanki, P. K., Sahoo, S. K., De, A., Bhattacharya, S., & Banerjee, S. (2017). Cloud computing-based non-invasive glucose monitoring for diabetic care. IEEE Transactions on Circuits and Systems I: Regular Papers, 65, 663–676. https://doi.org/10.1109/TCSI.2017.2724012
Pai, P.P., De, A., & Banerjee, S. (2017). Accuracy enhancement for noninvasive glucose estimation using dual-wavelength photoacoustic measurements and kernel-based calibration. IEEE, Transactions on Instrumentation and Measurement, 67, 126–136. https://doi.org/10.1109/TIM.2017.2761237
Pigman, W. (2012). The Carbohydrates: Chemistry and Biochemistry Physiology. Elsevier, New York City.
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380, 1347–1358. https://doi.org/10.1056/NEJMra1814259
Simeone, M. L., Parrella, R. A., Schaffert, R. E., Damasceno, C. M., Leal, M. C., & Pasquini, C. (2017). Near infrared spectroscopy determination of sucrose, glucose and fructose in sweet sorghum juice. Microchemical Journal, 134, 125-130. https://doi.org/10.1016/j.microc.2017.05.020.
Smith, J.L. (2015). The pursuit of noninvasive glucose: Hunting the deceitful turkey (Revised and Expanded).
Song, K., Ha, U., Park, S., Bae, J., & Yoo, H.J. (2015). An impedance and multi-wavelength near-infrared spectroscopy ic for non-invasive blood glucose estimation. IEEE, Journal of Solid-State Circuits, 50, 1025–1037. https://doi.org/10.1109/JSSC.2014.2384037
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C., & Mbanya, J.C. (2022). Idf diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119.
Teki, S., Sriharsha, K., & Nandimandalam, M. (2021). A diabetic prediction system based on mean shift clustering. Nutrition, 84, S177–S181. https://doi.org/10.18280/isi.260210
Uwadaira, Y., Ikehata, A., Momose, A., & Miura, M. (2016). Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomedical Optics Express, 7(7), 2729. https://doi.org/10.1364/BOE.7.002729.
Van Enter, B. J., & Von Hauff, E. (2018). Challenges and perspectives in continuous glucose monitoring. Chemical Communications, 54(40), 5032-5045. https://doi.org/10.1039/C8CC01678J.
Villena Gonzales, W., Mobashsher, A. T., & Abbosh, A. (2019). The progress of glucose monitoring-A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors, 19(4), 800. https://doi.org/10.3390/s19040800.
Yadav, J., Rani, A., Singh, V., & Murari, B. M. (2015). Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomedical Signal Processing and Control, 18, 214-227. https://doi.org/10.1016/j.bspc.2015.01.005.
Yang, W., Liao, N., Cheng, H., Li, Y., Bai, X., & Deng, C. (2018). Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer. AIP Advances, 8(3), 035216. https://doi.org/10.1063/1.5017169.
Yeaw, J., Lee, W. C., Aagren, M., & Christensen, T. (2012). Cost of self-monitoring of blood glucose in the United States among patients on an insulin regimen for diabetes. Journal of Managed Care Pharmacy, 18(1), 21-32. https://doi.org/10.18553/jmcp.2012.18.1.21