An Effective PDE-based Thresholding for MRI Image Denoising and H-FCM-based Segmentation
DOI:
https://doi.org/10.52756/ijerr.2024.v44spl.005Keywords:
Adaptive Haar Wavelet Transform, Fuzzy C-means Clustering, Generalized cross-validation, Image denoising, Partial differential equationAbstract
Image denoising and segmentation play a crucial role in computer graphics and computer vision. A good image-denoising method must effectively remove noise while preserving important boundaries. Various image-denoising techniques have been employed to remove noise, but complete elimination is often impossible. In this paper, we utilize Partial Differential Equation (PDE) and generalised cross-validation (GCV) within Adaptive Haar Wavelet Transform algorithms to effectively denoise an image, with the digital image serving as the input. After denoising, the image is segmented using the Histon-related fuzzy c-means algorithm (H-FCM), with the processed image serving as the output. The proposed method is tested on images exposed to varying levels of noise. The performance of image denoising and segmentation techniques is evaluated using metrics such as Peak Signal-to-Noise Ratio (PSNR) of 77.42, Mean Squared Error (MSE) of 0.0011, and Structural Similarity Index (SSIM) of 0.7848. Additionally, segmentation performance is measured with a sensitivity of 99%, specificity of 98%, and an accuracy of 98%. The results demonstrate that the proposed methods outperform conventional approaches in these metrics. The implementation of the proposed methods is carried out on the MATLAB platform.
References
Abdellahoum, H., Mokhtari, N., Brahimi, A., & Boukra, A. (2021). CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach. Expert Systems with Applications, 166, 114063. https://doi.org/10.1016/j.eswa.2020.114063 DOI: https://doi.org/10.1016/j.eswa.2020.114063
Ai, D., Yang, J., Fan, J., Cong, W., & Wang, X. (2015). Denoising filters evaluation for magnetic resonance images. Optik-International Journal for Light and Electron Optics, 126(23), 3844-3850. https://doi.org/10.1016/j.ijleo.2015.07.155 DOI: https://doi.org/10.1016/j.ijleo.2015.07.155
Ally, N., Nombo, J., Ibwe, K., Abdalla, A. T., & Maiseli, B. J. (2021). Diffusion-driven image denoising model with texture preservation capabilities. Journal of Signal Processing Systems, 93(8), 937-949. https://doi.org/10.1007/s11265-020-01621-3 DOI: https://doi.org/10.1007/s11265-020-01621-3
Aswathy, C., Sowmya, V., & Soman, K. P. (2015). Hyperspectral image denoising using low pass sparse banded filter matrix for improved sparsity based classification. Procedia Computer Science, 58, 26-33. https://doi.org/10.1016/j.procs.2015.08.005 DOI: https://doi.org/10.1016/j.procs.2015.08.005
Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., & Bakas, S. (2021). The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314.
Bhandari, A. K., Kumar, A., Chaudhary, S., & Singh, G. K. (2016). A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms. Expert Systems with Applications, 1-40. https://doi.org/10.1016/j.eswa.2016.06.044 DOI: https://doi.org/10.1016/j.eswa.2016.06.044
Bhandari, A. K., Kumar, D., Kumar, A., & Singh, G. K. (2016). Optimal sub-band adaptive thresholding based edge preserved satellite image denoising using adaptive differential evolution algorithm. Neurocomputing, 174, 698-721. https://doi.org/10.1016/j.neucom.2015.09.079 DOI: https://doi.org/10.1016/j.neucom.2015.09.079
Cao, Y., Zhang, S., Zha, Z.J., Zhang, J., & Chen, C. W. (2014). A novel segmentation-based video-denoising method with noise level estimation. Information Science, 281, 507-520. https://doi.org/10.1016/j.ins.2014.05.031 DOI: https://doi.org/10.1016/j.ins.2014.05.031
Chen, G., Zhang, P., Wu, Y., Shen, D., & Yap, P.-T. (2016). Denoising magnetic resonance images using collaborative non-local means. Neurocomputing, 177, 215-227. https://doi.org/10.1016/j.neucom.2015.11.031 DOI: https://doi.org/10.1016/j.neucom.2015.11.031
Cui, B., Ma, X., Xie, X., Ren, G., & Ma, Y. (2016). Classification of visible and infrared hyperspectral images based on image segmentation and edge-preserving filtering. Infrared Physics & Technology, 81, 79-88. https://doi.org/10.1016/j.infrared.2016.12.010 DOI: https://doi.org/10.1016/j.infrared.2016.12.010
Feng, X.C., Luo, L., Jia, X., & Wang, W. (2015). A divide-and-conquer stochastic alterable direction image denoising method. Signal Processing, 108, 90-101. https://doi.org/10.1016/j.sigpro.2014.08.036 DOI: https://doi.org/10.1016/j.sigpro.2014.08.036
Feng, C., Zhao, D., & Huang, M. (2016). Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy c-means (BCEFCM). Signal Processing, 122, 164-189. https://doi.org/10.1016/j.sigpro.2015.12.007 DOI: https://doi.org/10.1016/j.sigpro.2015.12.007
Fu, Y., & Dong, W. (2016). 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing, 195, 30-39. https://doi.org/10.1016/j.neucom.2015.09.125 DOI: https://doi.org/10.1016/j.neucom.2015.09.125
Gautam, S., Ahlawat, S., & Mittal, P. (2022). Binary and Multi-class Classification of Brain Tumors using MRI Images. Int. J. Exp. Res. Rev., 29, 1-9. https://doi.org/10.52756/ijerr.2022.v29.001 DOI: https://doi.org/10.52756/ijerr.2022.v29.001
Goel, A., Wasim, J., & Srivastava, P. (2023). A Noise reduction in the medical images using hybrid combination of filters with nature-inspired Black Widow Optimization Algorithm. Int. J. Exp. Res. Rev., 30, 433-441. https://doi.org/10.52756/ijerr.2023.v30.040. DOI: https://doi.org/10.52756/ijerr.2023.v30.040
Khodabakhshi Rafsanjani, H., Sedaaghi, M. H., & Saryazdi, S. (2016). Efficient diffusion coefficient for image denoising. Computers and Mathematics with Applications, 1-11. https://doi.org/10.1016/j.camwa.2016.06.005 DOI: https://doi.org/10.1016/j.camwa.2016.06.005
Himabindu, D. D., Pranalini, B., Kumar, M., Neethika, A., Sree N, B., C, M., B, H., & S, K. (2024). Deep CNN-based Classification of Brain MRI Images for Alzheimer’s Disease Diagnosis. International Journal of Experimental Research and Review, 41(Spl Vol), 43-54. https://doi.org/10.52756/ijerr.2024.v41spl.004 DOI: https://doi.org/10.52756/ijerr.2024.v41spl.004
Huang, Y., Chen, X., Zhang, J., Zeng, D., Zhang, D., & Ding, X. (2015). Single-trial ERPs denoising via collaborative filtering on ERPs images. Neurocomputing, 149, 914-923. https://doi.org/10.1016/j.neucom.2014.07.043 DOI: https://doi.org/10.1016/j.neucom.2014.07.043
Islam, N., Shahid, Z., & Puech, W. (2016). Denoising and error correction in noisy AES-encrypted images using statistical measures. Signal Processing: Image Communication, 41, 15-27. https://doi.org/10.1016/j.image.2015.11.003 DOI: https://doi.org/10.1016/j.image.2015.11.003
Jain, J., Sahu, S., & Dixit, A. (2023). Brain tumor detection model based on CNN and threshold segmentation. Int. J. Exp. Res. Rev., 32, 358-364. https://doi.org/10.52756/ijerr.2023.v32.031 DOI: https://doi.org/10.52756/ijerr.2023.v32.031
Jalab, H. A., & Ibrahim, R. W. (2015). Fractional Alexander polynomials for image denoising. Signal Processing, 107, 340-354. https://doi.org/10.1016/j.sigpro.2014.06.004 DOI: https://doi.org/10.1016/j.sigpro.2014.06.004
Han, A., Waqas, M., Ali, M. R., Altalhi, A., Alshomrani, S., & Shim, S.-O. (2016). Image de-noising using noise ratio estimation, K-means clustering and non-local means-based estimator. Computers & Electrical Engineering, 1-12. https://doi.org/10.1016/j.compeleceng.2015.12.019 DOI: https://doi.org/10.1016/j.compeleceng.2015.12.019
Kollem, S. (2024). A fast computational technique based on a novel tangent sigmoid anisotropic diffusion function for image-denoising. Soft Computing, 28, 7501–7526. https://doi.org/10.1007/s00500-024-09628-9 DOI: https://doi.org/10.1007/s00500-024-09628-9
Kollem, S., Reddy, K. R., & Rao, D. S. (2023). A novel diffusivity function-based image denoising for MRI medical images. Multimedia Tools and Applications, 82(21), 32057-32089. https://doi.org/10.1007/s11042-023-14457-3 DOI: https://doi.org/10.1007/s11042-023-14457-3
Kollem, S., Reddy, K. R. L., & Rao, D. S. (2022). Image denoising for magnetic resonance imaging medical images using improved generalized cross?validation based on the diffusivity function. International Journal of Imaging Systems and Technology, 32(4), 1263-1285. https://doi.org/10.1002/ima.22681 DOI: https://doi.org/10.1002/ima.22681
Kollem, S., Reddy, K. R. L., & Rao, D. S. (2020). Modified transform?based gamma correction for MRI tumor image denoising and segmentation by optimized histon?based elephant herding algorithm. International Journal of Imaging Systems and Technology, 30(4), 1271-1293. https://doi.org/10.1002/ima.22429 DOI: https://doi.org/10.1002/ima.22429
Kollem, S., Reddy, K. R. L., & Rao, D. S. (2019). Denoising and segmentation of MR images using fourth order non?linear adaptive PDE and new convergent clustering. International Journal of Imaging Systems and Technology, 29(3), 195-209. https://doi.org/10.1002/ima.22302 DOI: https://doi.org/10.1002/ima.22302
Li, B., & Xie, W. (2016). Image denoising and enhancement based on adaptive fractional calculus of small probability strategy. Neurocomputing, 75, 704-714. https://doi.org/10.1016/j.neucom.2015.10.115 DOI: https://doi.org/10.1016/j.neucom.2015.10.115
Li, X., He, H., Wang, R., & Cheng, J. (2016). Super pixel-guided nonlocal means for image denoising and super-resolution. Signal Processing, 124, 173-183. https://doi.org/10.1016/j.sigpro.2015.09.021 DOI: https://doi.org/10.1016/j.sigpro.2015.09.021
Liu, J., Wang, Y., Su, K., & He, W. (2016). Image denoising with multidirectional shrinkage in directionlet domain. Signal Processing, 125, 64-78. https://doi.org/10.1016/j.sigpro.2016.01.013 DOI: https://doi.org/10.1016/j.sigpro.2016.01.013
Lotfi, Y., & Parand, K. (2022). Efficient image denoising technique using the meshless method: Investigation of operator splitting RBF collocation method for two anisotropic diffusion-based PDEs. Computers & Mathematics with Applications, 113, 315-331. https://doi.org/10.1016/j.camwa.2022.03.013 DOI: https://doi.org/10.1016/j.camwa.2022.03.013
Malini, S., & Moni, R. S. (2015). Image denoising using multiresolution singular value decomposition transform. Procedia Computer Science, 46, 1708-1715. https://doi.org/10.1016/j.procs.2015.02.114 DOI: https://doi.org/10.1016/j.procs.2015.02.114
Mishro, P. K., Agrawal, S., Panda, R., & Abraham, A. (2020). A novel type-2 fuzzy C-means clustering for brain MR image segmentation. IEEE Transactions on Cybernetics, 51(8), 3901-3912. https://doi.org/10.1109/TCYB.2020.2994235 DOI: https://doi.org/10.1109/TCYB.2020.2994235
Mittal, P. (2023). Wavelet transformation and predictability of Gold Price Index Series with ARMA model. Int. J. Exp. Res. Rev., 30, 127-133. https://doi.org/10.52756/ijerr.2023.v30.014. DOI: https://doi.org/10.52756/ijerr.2023.v30.014
Naresh, M., & Peddakrishna, S. (2023). Non-invasive near-infrared-based optical glucose detection system for accurate prediction and multi-class classification. Int. J. Exp. Res. Rev., 31(Spl Volume), 119-130. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.012. DOI: https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.012
Phophalia, A., & Mitra, S. K. (2014). Rough set based bilateral filter design for denoising brain MR images. Applied Soft Computing, 33, 1-14. https://doi.org/10.1016/j.asoc.2015.04.005 DOI: https://doi.org/10.1016/j.asoc.2015.04.005
Rafsanjani, H. K., Noori, H., & Naseri, N. (2022). Diffusion based method for impulse noise removal using residual feedback. Computers & Mathematics with Applications, 107, 45-56. https://doi.org/10.1016/j.camwa.2021.12.015 DOI: https://doi.org/10.1016/j.camwa.2021.12.015
Xu, S., Yang, X., & Jiang, S. (2016). A fast nonlocally centralized sparse representation algorithm for image denoising. Signal Processing, 131, 99-112. https://doi.org/10.1016/j.sigpro.2016.08.006 DOI: https://doi.org/10.1016/j.sigpro.2016.08.006
Zhang, C., Chen, Y., Duanmu, C., & Yang, Y. (2015). Image denoising by using PDE and GCV in tetrolet transform domain. Engineering Applications of Artificial Intelligence, 48, 204-229. https://doi.org/10.1016/j.engappai.2015.10.008 DOI: https://doi.org/10.1016/j.engappai.2015.10.008
Zhang, M., Jiang, W., Zhou, X., Xue, Y., & Chen, S. (2019). A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft Computing, 23(6), 2033-2046. https://doi.org/10.1016/j.engappai.2015.10.008 DOI: https://doi.org/10.1007/s00500-017-2916-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.