Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study

  • Vijay Mehta Retort Pharmaceuticals Private Limited, 21/2 McNichols Road, Chetpet, Chennai – 600031, Tamil Nadu, India
  • Amit Dey Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
  • Nandita Thakkar Retort Pharmaceuticals Private Limited, 21/2 McNichols Road, Chetpet, Chennai – 600031, Tamil Nadu, India
  • Keerthana Prabhakar Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
  • Ganesan Jothimani Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
  • Antara Banerjee Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India https://orcid.org/0000-0002-5519-6878
Keywords: Alternative medicine, anti-cancer potential, Cell death, Colon Cancer, Cytotoxicity, Lung Cancer

Abstract

Cancer is a complex disease characterized by a cascade of events that culminate in the accumulation of several genetic alterations. Because of the high incidence and mortality rate, scientists began seeking novel medications that were harmful to cancer cells but not to healthy cells. This study aimed to investigate the effect of CELNORM and its various components individually in colon and lung cancer cells. Based on the LD50 value, colon and lung cancer cells were treated with two different dosages of curcumin, pepper, carrot and cucumber extracts, individually and CELNORM (formulation with all four ingredients). The cytotoxicity of each compound has been checked through morphological analysis and cell viability assay by using the CCK8 kit and statistically analyzed. qPCR-based Gene expression study has also been done to further validate the anti-cancerous properties of the compounds.  Curcumin extract decreased cancer cell growth, as evidenced by cytotoxicity and morphological analyses, but pepper, carrot, and cucumber extracts showed a less significant reduction in cancer cell growth. CELNORM, on the other hand, had the highest significant effect in suppressing cell proliferation, indicating the novel health supplement CELNORM renders more efficacy than individual components. Gene expression analysis also verifies the anti-cancerous properties of CELNORM, though some gene expressions are not in the expected line. The morphological analysis and cell viability result has shown the efficacy of the CELNORM over the individual compounds of the CELNORM and gene expression analysis of proliferative genes such as Cyclin D, CDK6, PCNA and BCL-2 further validates the anti-cancerous properties of CELNORM and all four components.

References

Aggarwal, B.B., Kumar, A., & Bharti, A.C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23(1 A), 363–398.

Aggarwal, S., Ichikawa, H., Takada, Y., Sandur, S. K., Shishodia, S., & Aggarwal, B. B. (2006). Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation. Molecular Pharmacology, 69(1), 195–206. https://doi.org/10.1124/mol.105.017400

Banerjee, A., Chabria, Y., Kanna N. R, R., Gopi, J., Rowlo, P., Sun, X. F., & Pathak, S. (2021). Role of Tumor Specific niche in Colon Cancer Progression and Emerging Therapies by Targeting Tumor Microenvironment. Advances in Experimental Medicine and Biology, 1341, 177–192. https://doi.org/10.1007/5584_2019_355

Benjamin D. Granta, Chelsey A. Smithb, Philip E. Castlec, d, Michael E. Scheurere, and R. R.-K. (2017). HHS Public Access. Physiology & Behavior, 176(5), 139–148. https://doi.org/10.1002/anie.201209804.A

Bode, A., & Zigang, D. (2011). Cancer Prevention Research–Then and Now Ann. Bone, 23(1), 1–7. https://doi.org/10.1038/nrc2646.Cancer

Boland, C.R., & Goel, A. (2010). Microsatellite Instability in Colorectal Cancer. Gastroenterology, 138(6), 2073-2087.e3. https://doi.org/10.1053/j.gastro.2009.12.064

Butler, M. S. (2008). Natural products to drugs: Natural product-derived compounds in clinical trials. Natural Product Reports, 25(3), 475–516. https://doi.org/10.1039/b514294f

Clarke, R., & Armitage, J. (2003). SYMPOSIUM : VITAMIN THERAPY AND ISCHEMIC HEART DISEASE Antioxidant Vitamins and Risk of Cardiovascular Disease . Review of Large-Scale Randomised Trials. Cardiovascular Drugs and Therapy, pp. 411–415.

da Silva Dias, J. C. (2014). Nutritional and Health Benefits of Carrots and Their Seed Extracts. Food and Nutrition Sciences, 05(22), 2147–2156. https://doi.org/10.4236/fns.2014.522227

Dagogo-Jack, I., & Shaw, A. T. (2018). Tumour heterogeneity and resistance to cancer therapies. Nature Reviews Clinical Oncology, 15(2), 81–94. https://doi.org/10.1038/nrclinonc.2017.166

Deng, Y., Sriwiriyajan, S., Tedasen, A., Hiransai, P., & Graidist, P. (2016). Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. Journal of Ethnopharmacology, 188, 87–95. https://doi.org/10.1016/j.jep.2016.04.047

Ganesan, H., Nandy, S. K., Banerjee, A., Pathak, S., Zhang, H., & Sun, X. F. (2022). RNA-Interference-Mediated miR-122-Based Gene Regulation in Colon Cancer, a Structural In Silico Analysis. International Journal of Molecular Sciences, 23(23), 15257. https://doi.org/10.3390/IJMS232315257/S1

GLOBOCAN (2018). counting the toll of cancer. In The Lancet, 392(10152), 985. https://doi.org/10.1016/S0140-6736(18)32252-9

Gunjal, P. M., Schneider, G., Ismail, A. A., Kakar, S. S., Kucia, M., & Ratajczak, M. Z. (2015). Evidence for induction of a tumor metastasis-receptive microenvironment for ovarian cancer cells in bone marrow and other organs as an unwanted and underestimated side effect of chemotherapy/radiotherapy. Journal of Ovarian Research, 8(1), 1–11. https://doi.org/10.1186/S13048-015-0141-7/FIGURES/5

Guo, M., Peng, Y., Gao, A., Du, C., & Herman, J. G. (2019). Epigenetic heterogeneity in cancer. Biomarker Research, 7(1), 1–19. https://doi.org/10.1186/s40364-019-0174-y

Hertog, M. G. L., Feskens, E. J. M., Kromhout, D., Hertog, M. G. L., Hollman, P. C. H., Hertog, M. G. L., & Katan, M. B. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet, 342(8878), 1007–1011. https://doi.org/10.1016/0140-6736(93)92876-U

Hesketh, R. (1997). The Multistep Nature of Cancer. The Oncogene & Tumour Suppressor Gene Factsbook, 9(4), 54–60. https://doi.org/10.1016/b978-012344548-3/50010-8

Hussein, R. M., Mohammed, A. T., Hussein, D. M., Fadhil, A. A., Al-Ani, M. S., Bayati, S., & Sahib, A. A. (2023). The Influence of Fish Oil Supplementation on the Adverse Effects of Chemotherapy in Patients with Hepatocellular Carcinoma. Journal of Chemical Health Risks, 13(1), 125–133. https://doi.org/10.22034/JCHR.2022.697645

Jacobsen, P. B., & Stein, K. (1999). Is fatigue a long-term side effect of breast cancer treatment? Cancer Control, 6(3), 256–263. https://doi.org/10.1177/107327489900600304

Jemal, A., Bray, F., & Ferlay, J. (1999). Global Cancer Statistics: 2011. CA Cancer J Clin, 49(2), 1,33-64. https://doi.org/10.3322/caac.20107.Available

Jin, M., Kong, L., Han, Y., & Zhang, S. (2021). Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability. Phytotherapy Research, 35(10), 5823–5837.https://doi.org/10.1002/PTR.7240

John, J. H., Ziebland, S., Yudkin, P., Roe, L. S., & Neil, H. A. W. (2002). Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: A randomised controlled trial. Lancet, 359(9322), 1969–1974. https://doi.org/10.1016/S0140-6736(02)98858-6

Jothimani, G., Ganesan, H., Pathak, S., & Banerjee, A. (2022). Molecular characterization of primary and metastatic colon cancer cells to identify therapeutic targets with natural compounds. Current Topics in Medicinal Chemistry, 22. https://doi.org/10.2174/1568026622666220401161511

Kirubhanand, C., Merciline, L J.,, Anitha, S., Sangeetha, R., Nachammai, K.T., Langeswaran, K., Gowtham, K. S. (2023) Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches. Front Mol Biosci. 10:1124563. https://doi.org/10.3389/fmolb.2023.1124563.

Krasteva, N., & Georgieva, M. (2022). Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics, 14(6). https://doi.org/10.3390/PHARMACEUTICS14061213

Kumar, D., Kumar, S., Singh, J., Narender, Rashmi, Vashistha, B. D., & Singh, N. (2010). Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. Journal of Young Pharmacists, 2(4), 365–368. https://doi.org/10.4103/0975-1483.71627

Lee, K. W., Bode, A. M., & Dong, Z. (2011). Molecular targets of phytochemicals for cancer prevention. Nature Reviews Cancer, 11(3), 211–218. https://doi.org/10.1038/nrc3017

Li, X., Ma, S., Yang, P., Sun, B., Zhang, Y., Sun, Y., Hao, M., Mou, R., & Jia, Y. (2018). Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncology Letters, 16(5), 6756–6762. https://doi.org/10.3892/OL.2018.9488/HTML

López-Lázaro, M. (2008). Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Molecular Nutrition and Food Research, 52(SUPPL. 1), 103–127. https://doi.org/10.1002/mnfr.200700238

Masrul, M., & Nindrea, R. D. (2019). Dietary fibre protective against colorectal cancer patients in Asia: A meta-analysis. Open Access Macedonian Journal of Medical Sciences, 7(10), 1723–1727. https://doi.org/10.3889/oamjms.2019.265

Naidu, M. U. R., Ramana, G. V., Rani, P. U., Mohan, I. K., Suman, A., & Roy, P. (2004). Chemotherapy-induced and/or radiation therapy-induced oral mucositis - Complicating the treatment of cancer. Neoplasia, 6(5), 423–431. https://doi.org/10.1593/neo.04169

Naik, K., Chaudhary, S., Ye, L., & Parmar, A. S. (2022). A Strategic Review on Carbon Quantum Dots for Cancer-Diagnostics and Treatment. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.882100

Nasab, S. H., Amani, A., Ebrahimi, H. A., & Hamidi, A. A. (2021). Design and preparation of a new multi-targeted drug delivery system using multifunctional nanoparticles for co-delivery of siRNA and paclitaxel. Journal of Pharmaceutical Analysis, 11(2), 163–173. https://doi.org/10.1016/j.jpha.2020.04.005

Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461–477. https://doi.org/10.1021/NP068054V/SUPPL_FILE/NP068054V_SA.PDF

Ojo, O. A., Adeyemo, T. R., Rotimi, D., Batiha, G. E. S., Mostafa-Hedeab, G., Iyobhebhe, M. E., Elebiyo, T. C., Atunwa, B., Ojo, A. B., Lima, C. M. G., & Conte-Junior, C. A. (2022). Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Frontiers in Oncology, 12. https://doi.org/10.3389/FONC.2022.881641

Oun, R., Moussa, Y. E., & Wheate, N. J. (2018). The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Transactions, 47(19), 6645–6653. https://doi.org/10.1039/c8dt00838h

Paramita, P., Sethu, S.N., Subhapradha, N., Ragavan, V., Ilangovan, R., Balakrishnan, A., Srinivasan, N., Murugesan, R., Moorthi, (2022) A. Neuro-protective effects of nano-formulated hesperetin in a traumatic brain injury model of Danio rerio. Drug Chem Toxicol. 45(2):507-514. doi: 10.1080/01480545.2020.1722690.

Pino, M. S., & Chung, D. C. (2010). The Chromosomal Instability Pathway in Colon Cancer. Gastroenterology, 138(6), 2059–2072. https://doi.org/10.1053/j.gastro.2009.12.065

Poljsak, B., Šuput, D., & Milisav, I. (2013). Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 2013. https://doi.org/10.1155/2013/956792

Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Research and Treatment, 46(1), 2–18. https://doi.org/10.4143/crt.2014.46.1.2

Rao, C. V. (2007). Regulation of COX and LOX by curcumin. Advances in Experimental Medicine and Biology, 595, 213–226. https://doi.org/10.1007/978-0-387-46401-5_9

S Shankar 1, E. L. (1991). Dietary fiber and cancer prevention - PubMed. Hematology/Oncology Clinical North America, 5(1), 25–41. https://pubmed.ncbi.nlm.nih.gov/1851150/

Saeed, H., & Waheed, A. (2017). A REVIEW ON CUCUMBER (Cucumis sativus). International Journal of Technical Research & Science A, 2(6), 365–374.

Saja, K., Babu, M. S., Karunagaran, D., & Sudhakaran, P. R. (2007). Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. International Immunopharmacology, 7(13), 1659–1667. https://doi.org/10.1016/j.intimp.2007.08.018

Sakr, A. S., Soliman, N. F., Al-Gaashani, M. S., Pławiak, P., Ateya, A. A., & Hammad, M. (2022). An Efficient Deep Learning Approach for Colon Cancer Detection. Applied Sciences 2022, Vol. 12, Page 8450, 12(17), 8450. https://doi.org/10.3390/APP12178450

Sathya, T. N. Mehta, V. A., Senthil, D., Navaneethakrishnan, K. R., Murugan, S. S., Kumaravel, T.S. (2020). Cytotoxicity evaluation of CELNORM, a nutritional health supplement, on MCF7 breast cancer cells. Indian Journal of Science and Technology, 13(30), 2170–2175. https://doi.org/10.17485/ijst/v13i30.1150

Shahidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic Antioxidants. Critical Reviews in Food Science and Nutrition, 32(1), 67–103. https://doi.org/10.1080/10408399209527581

Sharma, K. D., & Karki, S. (2012). Chemical composition , functional properties and processing of carrot — a review. 49, 22–32. https://doi.org/10.1007/s13197-011-0310-7

Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. Cancer Cell, 2(2), 103–112. https://doi.org/10.1016/S1535-6108(02)00102-2

Sriramulu, S., Sun, X. F., Malayaperumal, S., Ganesan, H., Zhang, H., Ramachandran, M., Banerjee, A., & Pathak, S. (2021). Emerging role and clinicopathological significance of aeg-1 in different cancer types: A concise review. Cells, 10(6), 1–18. https://doi.org/10.3390/cells10061497

Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768–780. https://doi.org/10.1038/nrc1189

Thomasset, S. C., Berry, D. P., Garcea, G., Marczylo, T., Steward, W. P., & Gescher, A. J. (2007). Dietary polyphenolic phytochemicals - Promising cancer chemopreventive agents in humans? A review of their clinical properties. International Journal of Cancer, 120(3), 451–458. https://doi.org/10.1002/ijc.22419

Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., Newman, J., Reczek, E. E., Weissleder, R., & Jacks, T. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature, 445(7128), 661–665. https://doi.org/10.1038/nature05541

Vogelzang, N. J., Bosl, G. J., Johnson, K., & Kennedy, B. J. (1981). Raynaud’s phenomenon: a common toxicity after combination chemotherapy for testicular cancer. Annals of Internal Medicine, 95(3), 288–292. https://doi.org/10.7326/0003-4819-95-3-288

Yang, S., Zhang, Z., & Wang, Q. (2019). Emerging therapies for small cell lung cancer. Journal of Hematology and Oncology, 12(1), 1–11. https://doi.org/10.1186/S13045-019-0736-3/FIGURES/2

Yngve, A. (2013). Fruit and vegetable consumption revisited. Public Health Nutrition, 16(11), 1911. https://doi.org/10.1017/S136898001300270X

Yuan, M., Zhao, Y., Arkenau, H. T., Lao, T., Chu, L., & Xu, Q. (2022). Signal pathways and precision therapy of small-cell lung cancer. Signal Transduction and Targeted Therapy, 7(1), 1–18. https://doi.org/10.1038/s41392-022-01013-y

Zabernigg, A., Gamper, E.-M., Giesinger, J. M., Rumpold, G., Kemmler, G., Gattringer, K., Sperner-Unterweger, B., & Holzner, B. (2010). Taste Alterations in Cancer Patients Receiving Chemotherapy: A Neglected Side Effect? The Oncologist, 15(8), 913–920. https://doi.org/10.1634/theoncologist.2009-0333

Zhou, H., S. Beevers, C., & Huang, S. (2012). The Targets of Curcumin. Current Drug Targets, 12(3), 332–347. https://doi.org/10.2174/138945011794815356

Published
2023-08-30
How to Cite
Mehta, V., Dey, A., Thakkar, N., Prabhakar, K., Jothimani, G., & Banerjee, A. (2023). Anti-cancer Properties of Dietary Supplement CELNORM against Colon and Lung Cancer: An in vitro preliminary study. International Journal of Experimental Research and Review, 32, 1-14. https://doi.org/10.52756/ijerr.2023.v32.001
Section
Articles