Role of 4-Phenylbutyric Acid in DNA and Protein Binding and its Functional Analysis

Authors

  • Dikshita Deka Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India https://orcid.org/0000-0001-5087-9023
  • Alakesh Das Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India https://orcid.org/0000-0003-2595-9309
  • Ashiq Shibili P Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
  • Antara Banerjee Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India https://orcid.org/0000-0002-5519-6878

DOI:

https://doi.org/10.52756/ijerr.2024.v45spl.017

Keywords:

Anti-bacterial activity, Cytotoxicity, DNA-Binding, 4-Phenylbutyric Acid

Abstract

4-Phenylbutyric acid (4-PBA) is a small molecule known for its protein folding capacity to reduce endoplasmic reticulum (ER)-stress. This study aimed to explore the potential of 4-PBA by studying its interactions with DNA and protein and examining its effects on cellular toxicity and antibacterial activity. UV-VIS absorption spectroscopy demonstrated that 4-PBA effectively binds to calf thymus DNA (CT-DNA), as indicated by an evident hyperchromic shift, suggesting stable intercalating interactions. Similarly, the fluorescence quenching assay demonstrated that 4-PBA also interacts with bovine serum albumin (BSA), reducing fluorescence intensity by occupying specific binding sites on the protein. The cytotoxicity analysis using cell counting kit-8 further showed no significant reduction in cell viability of normal human lung epithelial cell line (L132). Subsequently, 4-PBA also exhibited minimal growth inhibition of Escherichia coli and Staphylococcus aureus bacterial strains, indicating limited antibacterial activity under the tested conditions. Additionally, this study provides a basis for future research towards the molecular mechanisms and therapeutic applications of 4-PBA.

References

Adhikari, S., Nath, P., Das, A., Datta, A., Baildya, N., Duttaroy, A. K., & Pathak, S. (2024). A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomedicine & pharmacotherapy = Biomedecine & Pharmacotherapie, 171, 116211. https://doi.org/10.1016/j.biopha.2024.116211

Adhikari, S., Sheikh, A. H., Baildya, N., Mahmoudi, G., Choudhury, N. A., Okpareke, O., Sen, T., Verma, A. K., Singh, R. K., Pathak, S., & Kaminsky, W. (2023). Antiproliferative evaluation and supramolecular properties of a Pd (II) complex harvested from benzil bis (pyridyl hydrazone) ligand: Combined experimental and theoretical studies. Inorganic Chemistry Communications, 152, 110646. https://doi.org/10.1016/j.inoche.2023.110646

Balakrishnan, N., Haribabu, J., Krishnan, D. A., Swaminathan, S., Mahendiran, D., Bhuvanesh, N. S., & Karvembu, R. (2019). Zinc (II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies. Polyhedron, 170, 188-201.

Bhattacharjee, T., Nath, S., Baildya, N., Das, A., Pathak, S., Molins, E., Mahmoudi, G., Verma, AK., Borah, P., & Adhikari S. (2024). Supramolecular assemblies of Zn (II) complex based on dithiolate-amine binary ligands: Synthesis, crystal structure, Hirshfeld surface, DFT, molecular docking, and anticancer studies. Inorganic Chemistry Communications, 167, 112762. https://doi.org/10.1016/j.inoche.2024.112762

Cao, A. L., Wang, L., Chen, X., Wang, Y. M., Guo, H. J., Chu, S., Liu, C., Zhang, X. M., & Peng, W. (2016). Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Laboratory investigation; a Journal of Technical Methods and Pathology, 96(6), 610–622. https://doi.org/10.1038/labinvest.2016.44

Chamcheu, J. C., Navsaria, H., Pihl-Lundin, I., Liovic, M., Vahlquist, A., & Törmä, H. (2011). Chemical chaperones protect epidermolysis bullosa simplex keratinocytes from heat stress-induced keratin aggregation: involvement of heat shock proteins and MAP kinases. The Journal of Investigative Dermatology, 131(8), 1684–1691. https://doi.org/10.1038/jid.2011.93

Chen, Y. M., Zhou, Y., Go, G., Marmerstein, J. T., Kikkawa, Y., & Miner, J. H. (2013). Laminin ?2 gene missense mutation produces endoplasmic reticulum stress in podocytes. Journal of the American Society of Nephrology : JASN, 24(8), 1223–1233. https://doi.org/10.1681/ASN.2012121149

Cox, P. J., Psomas, G., & Bolos, C. A. (2009). Characterization and DNA-interaction studies of 1, 1-dicyano-2, 2-ethylene dithiolate Ni (II) mixed-ligand complexes with 2-amino-5-methyl thiazole, 2-amino-2-thiazoline and imidazole. Crystal structure of [Ni (i-MNT)(2a-5mt) 2]. Bioorganic & Medicinal Chemistry, 17(16), 6054-6062.

de Almeida, S. F., Picarote, G., Fleming, J. V., Carmo-Fonseca, M., Azevedo, J. E., & de Sousa, M. (2007). Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation. The Journal of Biological Chemistry, 282(38), 27905–27912. https://doi.org/10.1074/jbc.M702672200

Deka, D., D'Incà, R., Sturniolo, G. C., Das, A., Pathak, S., & Banerjee, A. (2022). Role of ER Stress Mediated Unfolded Protein Responses and ER Stress Inhibitors in the Pathogenesis of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 67(12), 5392–5406. https://doi.org/10.1007/s10620-022-07467-y

Janjua, N. K., Siddiqa, A., Yaqub, A., Sabahat, S., Qureshi, R., & Ul-Haque, S. (2009). Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochimica Acta. Part A, Molecular and biomolecular spectroscopy, 74(5), 1135–1137. https://doi.org/10.1016/j.saa.2009.09.022

Knoop, F. (1968). The Degradation of Aromatic Fatty Acids in the Animal Body. InSource Book in Chemistry, 1900–1950, 342-346.

Kolb, P. S., Ayaub, E. A., Zhou, W., Yum, V., Dickhout, J. G., & Ask, K. (2015). The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. The international journal of Biochemistry & Cell Biology, 61, 45–52. https://doi.org/10.1016/j.biocel.2015.01.015

Krishnan, M., Dey, D. K., Sharma, C., & Kang, S. C. (2019). Antibacterial activity of Weissella confusa by disc diffusion method. Bangladesh Journal of Pharmacology, 14(3), 117-122.

Kusaczuk, M., Bartoszewicz, M., & Cechowska-Pasko, M. (2015). Phenylbutyric Acid: simple structure - multiple effects. Current Pharmaceutical Design, 21(16), 2147–2166. https://doi.org/10.2174/1381612821666150105160059

Liebler, D. C., & Guengerich, F. P. (2005). Elucidating mechanisms of drug-induced toxicity. Nature Reviews. Drug Discovery, 4(5), 410–420. https://doi.org/10.1038/nrd1720

Lu, H., Li, Z., Zhou, Y., Jiang, H., Liu, Y., & Hao, C. (2022). Horizontal comparison of "red or blue shift" and binding energy of six fluoroquinolones: Fluorescence quenching mechanism, theoretical calculation and molecular modeling method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 278, 121383. https://doi.org/10.1016/j.saa.2022.121383

Luo, T., Chen, B., & Wang, X. (2015). 4-PBA prevents pressure overload-induced myocardial hypertrophy and interstitial fibrosis by attenuating endoplasmic reticulum stress. Chemico-Biological Interactions, 242, 99–106. https://doi.org/10.1016/j.cbi.2015.09.025

Mazaira, G. I., Daneri-Becerra, C., Zgajnar, N. R., Lotufo, C. M., & Galigniana, M. D. (2018). Gene expression regulation by heat-shock proteins: the cardinal roles of HSF1 and Hsp90. Biochemical Society Transactions, 46(1), 51–65. https://doi.org/10.1042/BST20170335

Saibil, H. (2013). Chaperone machines for protein folding, unfolding and disaggregation. Nature reviews. Molecular cell biology, 14(10), 630–642. https://doi.org/10.1038/nrm3658

Sheng, J., Gan, J., & Huang, Z. (2013). Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Medicinal Research Reviews, 33(5), 1119–1173. https://doi.org/10.1002/med.21278

Valastyan, J. S., & Lindquist, S. (2014). Mechanisms of protein-folding diseases at a glance. Disease Models & Mechanisms, 7(1), 9–14. https://doi.org/10.1242/dmm.013474

Villani, S., Dematteis, G., Tapella, L., Gagliardi, M., Lim, D., Corazzari, M., Aprile, S., & Del Grosso, E. (2023). Quantification of the Chemical Chaperone 4-Phenylbutyric Acid (4-PBA) in Cell Culture Media via LC-HRMS: Applications in Fields of Neurodegeneration and Cancer. Pharmaceuticals (Basel, Switzerland), 16(2), 298. https://doi.org/10.3390/ph16020298

Wang, W. J., Mulugeta, S., Russo, S. J., & Beers, M. F. (2003). Deletion of exon 4 from human surfactant protein C results in aggresome formation and generation of a dominant negative. Journal of Cell Science, 116(Pt4), 683–692. https://doi.org/10.1242/jcs.00267

Published

2024-11-30

How to Cite

Deka, D., Das, A., Shibili P, A., & Banerjee, A. (2024). Role of 4-Phenylbutyric Acid in DNA and Protein Binding and its Functional Analysis. International Journal of Experimental Research and Review, 45(Spl Vol), 212–220. https://doi.org/10.52756/ijerr.2024.v45spl.017