Isozyme profiling of Antioxidant Enzyme in Macrotyloma uniflorum

  • Kalpita Bhatta Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India https://orcid.org/0000-0003-2944-2825
  • Himansu Bhusan Samal Department of Pharmaceutics, School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha-752054, India https://orcid.org/0000-0002-0803-6847
  • Pratikshya Mohanty Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India https://orcid.org/0009-0009-0758-8816
Keywords: Abiotic stress, Macrotyloma uniflorum, Antioxidant activities, Nickel, Isozyme

Abstract

The current climate change and pollution scenario has invariably increased the abiotic stress of salinity, heavy metals, and temperature on plants. Abiotic stress impacts the plant's defense system, impacting the crop's growth, yield, and productivity. The present investigation emphasised the antioxidant ability of Macrotyloma uniflorum under nickel stress which forms a major part of defense mechanism. It intricately evaluates the antioxidant activities of M. uniflorum with respect to different Nickel doses. The antioxidant defense system of plants includes enzymes including super oxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), and dehyrdoascorbate reductase (DHAR). These enzymes act as scavengers to ameliorate the free radicals cellular metabolism produces. Therefore, the present study gives a comprehensive understanding of the antioxidant enzymatic system with special reference to the role of each enzyme in response to the abiotic stress, especially nickel. By studying the isozyme pattern of these enzymes, we can compute the antioxidant activities in a very detailed manner. Different concentrations of Ni in the range of 25 ppm to 125 ppm were taken to find the optimum concentration of Ni for its antioxidant activities. SOD1 isozyme was the most prominent one among all at 25 ppm. The intensity of GPX2 in the black variety is more prominent at 100 ppm as compared to the control.  Thus, the results obtained could be easily used to evaluate the minimum concentration of Nickel for antioxidant.

References

Ahmad, P., Abdel Latef, A. A., Hashem, A., Abdallah, E. F., Gucel, S., & Tran, L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 7, 347. https://doi.org/10.3389/fpls.2016.00347.

Amanullah, F., & Khan, W. U. D. (2023). Trichoderma a sperellum L. Coupled the Effects of Biochar to Enhance the Growth and Physiology of Contrasting Maize Cultivars under Copper and Nickel Stresses. Plants, 12(4), 958.

https://doi.org/10.3390/plants12040958.

Ashraf, M. P. J. C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024.

Bano, S., Ashraf, M., & Akram, N. A. (2014). Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). Journal of Plant Interactions, 9(1), 324-329. https://doi.org/10.1080/17429145.2013.832426.

Basumatary, D., Yadav, H. S., & Yadav, M. (2023). Potential applications of peroxidase from Luffa acutangular in biotransformation. Chemical Papers, 77(6), 3181-3200. https://doi.org/10.1007/s11696-023-02696-5.

Basumatary, D., Yadav, H. S., & Yadav, M. (2023). Potential applications of peroxidase from Luffa acutangular in biotransformation. Chemical Papers, 77(6), 3181-3200. https://doi.org/10.1007/s11696-023-02696-5.

Bhat, J. A., Basit, F., Alyemeni, M. N., Mansoor, S., Kaya, C., & Ahmad, P. (2023). Gibberellic acid mitigates nickel stress in soybean by cell wall fixation and regulating oxidative stress metabolism and glyoxalase system. Plant Physiology and Biochemistry, 198, 107678. https://doi.org/10.1016/j.plaphy.2023.107678.

Biswas, K., Adhikari, S., Tarafdar, A., Kumar, R., Saha, S., & Ghosh, P. (2020). Reactive oxygen species and antioxidant defence systems in plants: role and crosstalk under biotic stress. Sustainable Agriculture in the Era of Climate Change, pp. 265-292. https://doi.org/10.1007/978-3-030-45669-6_12

Das, S., Krishnan, P., Nayak, M., & Ramakrishnan, B. (2013). Changes in antioxidant isozymes as a biomarker for characterizing high temperature stress tolerance in rice (Oryza sativa L.) spikelet’s. Experimental Agriculture, 49(1), 53-73. https://doi.org/10.1017/S0014479712001056.

Dinakar, N., Nagajyothi, P. C., Suresh, S., Udaykiran, Y., & Damodharam, T. (2008). Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J. Environ. Sci. (China)., 20(2), 199-206. https://doi.org/10.1016/s1001-0742(08)60032-7.

Gao, Y., Zhao, J., Zu, Y., Fu, Y., Liang, L., Luo, M., & Efferth, T. (2012). Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Research International, 49(1), 147-152. https://doi.org/10.1016/j.foodres.2012.08.001.

Hafeez, A., Rasheed, R., Ashraf, M. A., Qureshi, F. F., Hussain, I., & Iqbal, M. (2023). Effect of heavy metals on growth, physiological and biochemical responses of plants. In Plants and their Interaction to Environmental Pollution. Elsevier, pp. 139-159. https://doi.org/10.1016/B978-0-323-99978-6.00006-6.

Handa, N., Arora, U., Arora, N., Kaur, P., Kapoor, D., & Bhardwaj, R. (2021). Role of metabolites in abiotic stress tolerance in legumes. In Abiotic Stress and Legumes, Academic Press, pp. 245-276. https://doi.org/10.1016/B978-0-12-815355-0.00013-8.

Kar, M. & Feierabend, J. (1984). Metabolism of activated oxygen in detached wheat and rye leaves and its relevance to initiation of senesense. Planta, 160(5), 385-91. https://doi.org/10.1007/BF00429753.

Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H. U., Chung, S. M., & Kumar, M. (2023). Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signalling molecules—Current perspectives and future directions. Plants, 12(4), 864. https://doi.org/10.3390/plants12040864.

Kumari, A., Nagpal, A. K., & Katnoria, J. K. (2023). Antioxidant and growth responses to nickel-induced stress and its amelioration studies using [S, S] ethylenediamine-N–N’-disuccinic acid in Solanum lycopersicum. In Vitro Cellular & Developmental Biology-Plant, 59(1), 14-28. https://doi.org/10.1007/s11627-022-10326-0.

Liu, D., Gao, Z., Li, J., Yao, Q., Tan, W., Xing, W., & Lu, Z. (2023). Effects of cadmium stress on the morphology, physiology, cellular ultrastructure, and BvHIPP24 gene expression of sugar beet (Beta vulgaris L.). International Journal of Phytoremediation, 25(4), 455-465. https://doi.org/10.1080/15226514.2022.2090496

Maia, C. F., Pereira, Y. C., da Silva, B. R. S., Batista, B. L., & Lobato, A. K. D. S. (2023). Exogenously applied 24-epibrassinolide favours stomatal performance, ROS detoxification and nutritional balance, alleviating oxidative damage against the photosynthetic apparatus in tomato leaves under nickel stress. Journal of Plant Growth Regulation, 42(4), 2196-2211. https://doi.org/10.1007/s00344-022-10693-3.

Manaa, A., Faurobert, M., Valot, B., Bouchet, J. P., Grasselly, D., Causse, M., & Ahmed, H. B. (2013) Effect of salinity and calcium on tomato fruit proteome. OMICS: A Journal of Integrative Biology, 17, 338-352. https://doi.org/10.1089/omi.2012.0108.

Mansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., & Ahmad, P. (2022). Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2), 225. https://doi.org/10.3390/antiox11020225.

Naji, K. & Rangaiah, V. (2006). Antioxidants and Antioxidant enzymes of horse gram (Macrotyloma uniflorum) during high temperature stress. https://doi.org/10.13140/2.1.3156.4800.

Parmar, P., Patel, M. J., Dave, B., & Subramanian, R. Á. (2012). Nickel accumulation by Colocassia esculentum and its impact on plant growth and physiology. African Journal of Agricultural Research, 7(24), 3579-3587. https://doi.org/10.5897/AJAR11.1914.

Pinhero, R. G., Rao, M. V., Paliyath, G., Murr, D. P., & Fletcher, R. A. (1997). Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiology, 114(2), 695-704. https://doi.org/10.1104/pp.114.2.695.

Rout, J. R., Ram, S. S., Das, R., Chakraborty, A., Sudarshan, M., Sahoo, S. L. (2013). Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L. Physiol. Mol. Biol. Plants, 19(3), 353-61. https://doi.org/10.1007/s12298-013-0167-5.

Sahoo, A., Jena, A.K., & Panda, M. (2022a) Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. J. Ethnopharmacol., 298, 115591. https://doi.org/10.1016/j.jep.2022.115591.

Sahoo, A., Swain, S. S., Paital, B., & Panda, M. (2022b) Combinatorial approach of vitamin C derivative and anti-HIV drug-darunavir against SARS-CoV-2. Front Biosci. (Landmark Ed), 27(1). https://doi.org/10.31083/j.fbl2701010.

Sarkar, B., Bhattacharya, P., Yen Chen, C., Maity, J., & Biswas, T. (2022). A comprehensive characterization and therapeutic properties in ripened Noni fruits (Morinda citrifolia L.). International Journal of Experimental Research and Review, 29, 10-32. https://doi.org/10.52756/ijerr.2022.v29.002

Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26. https://doi.org/10.1155/2012/217037.

Silva, L. J. D., Dias, D. C. F. D. S., Sekita, M. C., & Finger, F. L. (2018). Lipid peroxidation and antioxidant enzymes of Jatropha curcas L. seeds stored at different maturitystages. Acta Scientiarum Agronomy, 40(34978), 1807-8621.

https://doi.org/10.4025/actasciagron.v40i1.34978.

Subhani, M. A., Amjad, M., Iqbal, M. M., Murtaza, B., Imran, M., Naeem, M. A., & Andersen, M. N. (2023). Nickel toxicity pretreatment attenuates salt stress by activating antioxidative system and ion homeostasis in tomato (Solanum lycopersicon L.): an interplay from mild to severe stress. Environmental Geochemistry and Health, 45(1), 227-246. https://doi.org/10.1007/s10653-022-01336-3.

Swain, S. S., & Padhy, R. N. (2015). In vitro antibacterial efficacy of plants used by an Indian aborigine tribe against pathogenic bacteria isolated from clinical samples. J Taibah Univ Med Sci., 10(4), 379-390. https://doi.org/10.1016/j.jtumed.2015.08.006

Zhang, M., Fang, Y., Ji, Y., Jiang, Z., & Wang, L. (2013). Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. South African Journal of Botany, 85, 1-9. https://doi.org/10.1016/j.sajb.2012.11.005.

Zhang, Y., Gao, W., Ma, Y., Cheng, L., Zhang, L., Liu, Q., & Liu, C. (2023). Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today, 49, 101768. https://doi.org/10.1016/j.nantod.2023.101768

Published
2023-12-30
How to Cite
Bhatta, K., Samal, H., & Mohanty, P. (2023). Isozyme profiling of Antioxidant Enzyme in Macrotyloma uniflorum. International Journal of Experimental Research and Review, 36, 156-165. https://doi.org/10.52756/ijerr.2023.v36.015a
Section
Articles