Alcoholic Extracts of Eleusine indica as Alternative Diuretic Regimens: A Computational Based Investigation
DOI:
https://doi.org/10.52756/ijerr.2024.v37spl.002Keywords:
Diuretics, Natural diuretics, Gas Chromatography-Mass Spectrometry, Molecular docking, Toxicity predictionAbstract
Diuretics are widely used in current clinical practice to increase urine production and excrete electrolytes, particularly sodium and chloride ions, without affecting the absorption of protein, vitamins, carbohydrates, or amino acids. From the time of mercury chloride and organomercurials in ancient times to now (with sulphonamides, thiazides, and furosemide), a lot has changed in the field of diuretics. However, long-term use of such synthetic diuretic agents in clinical practice produces several adverse effects, such as blurred vision, loss of appetite, stomach upset, carcinomas, headaches, phototoxic impact, weakness., etc., as has been observed from recent investigations. Natural regimens can serve as potential alternatives to using nontoxic diuretic agents. Based on long-term ethnomedicinal and biological activity records, we have explored the diuretic effects of the widely known perennial herb in Pacific Islands regions and a weed in agricultural fields, Eleusine indica (L) Gaertn phytoconstituents, on a computation platform. Therefore, we conducted a bio-assay-guided crude extraction using ethanol, followed by further gas chromatography-mass spectrometry (GC-MS) analyses of the extracted crude extracts. Further selected nine constituents (EI_1 to EI_9) carried out the diuretic potency against three putative target enzymes (ACE, KCNJ1, and SLC12A1) along with three standard drugs (VU590, TSM, and FSM) through molecular docking studies using AutoDock 4.2 software. We also predict physicochemical profiles, or Lipinski Rule of Five profiles, toxicity, and pharmacokinetics using various bioinformatics and cheminformatics tools. Based on the overall investigation, it was revealed that EI_6 [Z, Z-6,28-Heptatriacontadien-2-one] was the most potential, nontoxic, and drug-able candidate. In summary, advanced computational tools play a crucial role in selecting potential preclinical candidates within limited resources to accelerate the current drug discovery process.
References
Anbalagan, S., Kanakarajan, Sivakumari, Selvaraj, R., & Kolappapillai, P. (2023). In Silico Molecular Docking Analysis of Flavone and Phytol from Vilvam (Aegle marmelos) against Human Hepatocellular Carcinoma (HepG-2) Mitochondrial Proteins. Int. J. Exp. Res. Rev., 36, 405-414. https://doi.org/10.52756/ijerr.2023.v36.035
Arumugham, V.B., & Shahin, M.H. (2023). Therapeutic uses of diuretic agents. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
Atanasov, A.G., Zotchev, S.B., & Dirsch, V.M. (2021). International Natural Product Sciences Taskforce; Supuran CT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z
Bhosale, A., Kokate, A., Jarag, S., Bhise, M., Wagh, V., Chandra, P., Ranjan, R., & Choudante, S. (2023). Targeting COVID-19 through active phytochemicals of betel plant by molecular docking. Int. J. Exp. Res. Rev., 32, 178-187. https://doi.org/10.52756/ijerr.2023.v32.015
Blowey, D.L. (2016) Diuretics in the treatment of hypertension. Pediatr. Nephrol., 31(12), 2223-2233. https://doi.org/10.1007/s00467-016-3334-4
Ceasar, S.A., & Ignacimuthu, S. (2015). Finger millet [Eleusine coracana (L.) Gaertn]. Methods Mol. Biol., 1223, 135-42. https://doi.org/10.1007/978-1-4939-1695-5_10
Cheng, C.J., Rodan, A.R., & Huang, C.L. (2017). Emerging Targets of Diuretic Therapy. Clin. Pharmacol. Ther., 102(3), 420-435. https://doi.org/10.1002/cpt.754
Chopra, B., & Dhingra, A.K. (2021). Natural products: A lead for drug discovery and development. Phytother. Res., 35(9), 4660-4702. https://doi.org/10.1002/ptr.7099
Denton, J.S., Pao, A.C., & Maduke, M. (2013). Novel diuretic targets. Am. J. Physiol. Renal. Physiol., 305(7), F931-42. https://doi.org/10.1152/ajprenal.00230.2013
Dias, D.A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2(2), 303-36. https://doi.org/10.3390/metabo2020303
Dorce, A.L.C., Martins, A.D.N., Dorce, V.A.C., & Nencioni, A.L.A. (2017). Perinatal effects of scorpion venoms: maternal and offspring development. J. Venom. Anim. Toxins Incl. Trop Dis., 23, 31. https://doi.org/10.1186/s40409-017-0121-z
Escudero, V.J., Mercadal, J., Molina-Andújar, A., Piñeiro, G.J., Cucchiari, D., Jacas, A., Carramiñana, A., & Poch, E. (2022). New insights into diuretic use to treat congestion in the ICU: Beyond furosemide. Front. Nephrol., 2, 879766. https://doi.org/10.3389/fneph.2022.879766
Garcia, M.L., & Kaczorowski, G.J. (2014). Targeting the inward-rectifier potassium channel ROMK in cardiovascular disease. Curr. Opin. Pharmacol., 15, 1-6. https://doi.org/10.1016/j.coph.2013.11.005
Gupta, A., Zaheer, M.R., Iqbal, S., Roohi, A.A., & Alshammari, M.B. (2022). Photodegradation and in silico molecular docking study of a diuretic drug: Clopamide. ACS Omega, 7(16), 13870-13877. https://doi.org/10.1021/acsomega.2c00256
Islam, M.N., Hasan, M.F., Dey, A., Bokshi, B., Das, A.K., Sadhu, S.K., & Biswas, N.N. (2022). Identification of Potential Diuretic and Laxative Drug Candidates from Avicennia officinalis L. Bark through In Vivo Mice Model Studies and In Vitro Gas Chromatography-Mass Spectrometry and Molecular Docking Analysis. Evid Based Complement Alternat Med., 2022, 4409250. https://doi.org/10.1155/2022/4409250
Kehrenberg, M.C.A., & Bachmann, H.S. (2022). Diuretics: a contemporary pharmacological classification? Naunyn Schmiedebergs Arch. Pharmacol., 395(6), 619-627. https://doi.org/10.1007/s00210-022-02228-0
Konappa, N., Udayashankar, A.C., Krishnamurthy, S., Pradeep, C.K., Chowdappa, S., & Jogaiah, S. (2020). GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep., 10(1), 16438. https://doi.org/10.1038/s41598-020-73442-0
Li, J.W., & Vederas, J.C. (2009). Drug discovery and natural products: end of an era or an endless frontier? Science., 325(5937), 161-165. https://doi.org/10.1126/science.1168243
Liu, X.L., Wang, D.D., Wang, Z.H., & Meng, da L. (2015). Diuretic properties and chemical constituent studies on Stauntonia brachyanthera. Evid. Based Complement Alternat Med., 2015, 432419. https://doi.org/10.1155/2015/432419
Maughan, R.J., & Griffin, J. (2003). Caffeine ingestion and fluid balance: a review. J. Hum. Nutr. Diet., 16(6), 411-20. https://doi.org/10.1046/j.1365-277X.2003.00477.x
Ogbole, O.O., Segun, P.A., & Adeniji, A.J. (2017). In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med., 17(1), 494. https://doi.org/10.1186/s12906-017-2005-8
Ong, S.L., Mah, S.H., & Lai, H.Y. (2016). Porcine pancreatic lipase inhibitory agent isolated from medicinal herb and inhibition kinetics of extracts from Eleusine indica (L.) Gaertner. J. Pharm. (Cairo), 2016, 8764274. https://doi.org/10.1155/2016/8764274
Ong, S.L., Nalamolu, K.R., & Lai, H.Y. (2017). Potential lipid-lowering effects of Eleusine indica (L.) Gaertn. extract on high-fat-diet-induced hyperlipidemic rats. Pharmacogn. Mag., 13(Suppl 1), S1-S9. https://doi.org/10.4103/0973-1296.203986
Puah, P.Y., Lee, D.J.H., Puah, S.H., Lah, N.A.S.N., Ling, Y.S., & Fong, S.Y. (2022). High-throughput metabolomics reveals dysregulation of hydrophobic metabolomes in cancer cell lines by Eleusine indica. Sci. Rep., 12(1), 9347. https://doi.org/10.1038/s41598-022-13575-6
Ralte, L., Khiangte, L., Thangjam, N.M., Kumar, A., & Singh, Y.T. (2022). GC-MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep., 12(1), 3395. https://doi.org/10.1038/s41598-022-07320-2
Roush, G.C., Kaur, R., & Ernst, M.E. (2014). Diuretics: a review and update. J. Cardiovasc. Pharmacol. Ther., 19(1), 5-13. https://doi.org/10.1177/1074248413497257
Sahoo, A., Fuloria, S., Swain, S.S., Panda, S.K., Sekar, M., Subramaniyan, V., Panda, M., Jena, A.K., Sathasivam, K.V., & Fuloria, N.K. (2021). Potential of Marine Terpenoids against SARS-CoV-2: An in silico drug development approach. Biomedicines., 9(11), 1505. https://doi.org/10.3390/biomedicines9111505
Sahoo, A., Jena, A.K., & Panda, M. (2022a). Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. J. Ethnopharmacol., 298, 115591. https://doi.org/10.1016/j.jep.2022.115591
Sahoo, A., Swain, S.S., Panda, S.K., Hussain, T., Panda, M., & Rodrigues, C.F. (2022b). In silico identification of potential insect peptides against biofilm-producing Staphylococcus aureus. Chem. Biodivers., 19(10), e202200494. https://doi.org/10.1002/cbdv.202200494
Scheen, A.J. (2018). Type 2 diabetes and thiazide diuretics. Curr. Diab. Rep., 18(2), 6. https://doi.org/10.1007/s11892-018-0976-6
Sica, D.A., & Carter, B., Cushman, W., & Hamm, L. (2011). Thiazide and loop diuretics. J. Clin. Hypertens. (Greenwich), 13(9), 639-643. https://doi.org/10.1111/j.1751-7176.2011.00512.x
Sukor, N.S.M., Zakri, Z.H.M., Rasol, N.E., & Salim, F. (2023). Annotation and identification of phytochemicals from Eleusine indica using high-performance liquid chromatography tandem mass spectrometry: Databases-driven approach. Molecules., 28(7), 3111. https://doi.org/10.3390/molecules28073111
Swain, S.S., & Padhy, R.N. (2015). In vitro antibacterial efficacy of plants used by an Indian aborigine tribe against pathogenic bacteria isolated from clinical samples. J. Taibah Univ. Med. Sci., 10, 379-390. https://doi.org/10.1016/j.jtumed.2015.08.006
Swain, S.S., & Padhy, R.N. (2016). Isolated ESBL producing Gram-negative bacteria along with an in silico attempt against ESBL enzyme by flavonoids. J. Taibah. Univ. Med. Sci., 11, 217-229. https://doi.org/10.1016/j.jtumed.2016.03.007
Swain, S.S., Singh, S.R., Sahoo, A., Hussain, T., & Pati, S. (2022a). Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J. Biomol. Struct. Dyn., 40(14), 6463-6476. https://doi.org/10.1080/07391102.2021.1885495
Swain, S.S., Singhm, S.R., Sahoo, A., Panda, P.K., Hussain, T., & Pati, S. (2022b). Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins., 90(9), 1617-1633. https://doi.org/10.1002/prot.26341
Thorn, C.F., Ellison, D.H., Turner, S.T., Altman, R.B., & Klein, T.E. (2013). PharmGKB summary: Diuretics pathway, pharmacodynamics. Pharmacogenet Genomics, 23(8), 449-453. https://doi.org/10.1097/FPC.0b013e3283636822
Titko, T., Perekhoda, L., Drapak, I., & Tsapko, Y. (2020). Modern trends in diuretics development. Eur. J. Med. Chem., 208, 112855. https://doi.org/10.1016/j.ejmech.2020.112855
Wright, C.I., Van-Buren, L., Kroner, C. I, & Koning, M.M. (2007). Herbal medicines as diuretics: a review of the scientific evidence. J. Ethnopharmacol., 114(1), 1-31. https://doi.org/10.1016/j.jep.2007.07.023
Yang, L., Zeng, H., Xia, X., Wang, H., Zhao, B., & He, J. (2022). Natural phenylethanoid glycosides diuretics derived from Lagopsis supina: Biological activity, mechanism, molecular docking, and structure-activity relationship. Bioorg. Chem., 129, 106165. https://doi.org/10.1016/j.bioorg.2022.106165
Yu, Y., Hu, D., Liu, J., Wu, C., Sun, Y., Lang, M., Han, X., Kang, D., Min, J.Z., Cui, H., & Zheng, M. (2024). Constituents of Chimaphila japonica and Their Diuretic Activity. Molecules, 29(5), 1092. https://doi.org/10.3390/molecules29051092
Zhao, Y., & Cao, E. (2022). Structural pharmacology of cation-chloride cotransporters. Membranes (Basel), 12(12), 1206. https://doi.org/10.3390/membranes12121206