Synthesis of Coumarin Based Chemo-Sensors for the Detection of CN¯ Ions

  • Satadal Sengupta Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Naba Krishna St, Raja Nabakrishna Street Kolkata, West Bengal, India
  • Nilasish Pal Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Naba Krishna St, Raja Nabakrishna Street Kolkata, West Bengal, India
  • Anwesha Bhattacharyya Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Naba Krishna St, Raja Nabakrishna Street Kolkata, West Bengal, India
Keywords: Coumarin, Cyanide, probe, ratiometric

Abstract

In the modern day, chemistry governs the very essence of life on a sub-atomic level from simple toothpaste to life-saving drugs, we depend on the chemicals that constitute the very essence of existence itself. Therefore, the detection and study of these chemicals recognized as an absolute necessity because along with pros comes the cons, i.e., the toxicity & the notorious side effects of the very same chemicals. Thus, certain compounds called 'Chemo-sensors' specialise in trapping target chemical entities which could be separated later or create specific fluorescent lights, making them visible to the naked eye. One such type of 'fluorescent chemo-sensor is the family of chemicals called Coumarins. From the topic, we come across the family of Coumarins that can help detect the Cyanide ions (CN-) following the mechanism involving nucleophilic addition and intermolecular charge transfer (ICT), resulting in high fluorescence. 

References

Aksungur, T., Burcu, A., Nurgül, S., Müjgan, Ö., Leyla, A., Yasemin, R., Leyla, A. and Zeynel, S. (2017). Coumarin-Indole Conjugate Donor-Acceptor System: Synthesis, Photophysical Properties, Anion Sensing Ability, Theoretical and Biological Activity Studies of Two Coumarin-Indole Based Push-Pull Dyes. Journal of Molecular Structure. 1147: 364–379.

Anderson, L. C. (1986). This Is a Reproduction of a Library Book That Was Digitized by Google as Part of an Ongoing Effort to Preserve the Information in Books and Make It Universally Accessible. Biologia Centrali-America. 2: v–413.

Barnes, D. J., Chapman, R. L., Vagg, R. S. and Watton, E. C. (1978). Synthesis of Novel Bis(Amides) by Means of Triphenyl Phosphite Intermediates. Journal of Chemical and Engineering Data. 23 (4): 349–350.

Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S. and Lin, W. (2019). Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chemical Reviews. 119 (18): 10403–10519.

Chen, Y. and Rosenzweig, Z. (2002). Luminescent CdS Quantum Dots as Selective Ion Probes. Analytical Chemistry. 74 (19): 5132–5138.

Cho, D. G. and Jonathan, L. S. (2009). Modern Reaction-Based Indicator Systems. Chemical Society Reviews. 38 (6): 1647–1662.

Cigáň, M., Donovalová, j., Szöcs, V., Gašpar, J., Jakusová, K. and Gáplovský, A. (2013). 7-(Dimethylamino) Coumarin-3-Carbaldehyde and its Phenylsemicarbazone: TICT Excited State Modulation, Fluorescent H-Aggregates, and Preferential Solvation. Journal of Physical Chemistry. A 117 (23): 4870–4883.

Davis, A. B., Rachel, E. L., Frank, R. F., Peter, J. C. and Karl, J. W. (2014). An Activated Coumarin-Enamine Michael Acceptor for CN-. New Journal of Chemistry. 38 (10): 4678–4683.

Demas, J. N. and Crosby, G. A. (1971). The Measurement of Photo-luminescence Quantum Yields. A Review. The Journal of Physical Chemistry. 75 (8): 991–1024.

Dong, M., Peng, Y., Dong, Y. M., Tang, N. and n Wang, Y. W. (2012). A Selective, Colorimetric, and Fluorescent Chemodosimeter for Relay Recognition of Fluoride and Cyanide Anions Based on 1,1′-Binaphthyl Scaffold. Organic Letters. 14 (1): 130–133.

Dumas, A. M., Seed, A., Zorzitto, A. K. and Fillion, E. (2007). A General and Practical Preparation of Alkylidene Meldrum’s Acids. Tetrahedron Letters. 48 (40): 7072–7074.

Fowler, S. A. and Blackwell, H. E. (2009). Structure-Function Relationships in Peptoids: Recent Advances toward Deciphering the Structural Requirements for Biological Function. Organic and Biomolecular Chemistry. 7 (8): 1508–1524.

Fukuhara, G. (2020). Journal of Photochemistry and Photobiology C : Photochemistry Reviews Analytical Supramolecular Chemistry : Colorimetric and Fluorimetric Chemosensors. Journal of Photochemistry & Photobiology, C: Photochemistry Reviews. 42: 100340.

Hamilakis, S. and Tsolomitis, A. (2003). An Efficient Synthesis of 2-Amino-3-Cyano-2-Pyrrolin-4-Ones, via the Corresponding Open Chain Tautomers (Aminoacetylmalononitriles). Tetrahedron Lett. 44 (19): 3821–3823.

Herschy, R. W. (2012). Water Quality for Drinking: WHO Guidelines. Encyclopedia of Earth Sciences Series. Pp. 876–883.

Holub, J. M., Hangjun, J. and Kent, K. (2006). Clickity-Click: Highly Functionalized Peptoid Oligomers Generated by Sequential Conjugation Reactions on Solid-Phase Support. Organic and Biomolecular Chemistry. 4 (8): 1497–1502.

Hong, K. H. and Kim, H. J. (2013). Azo Dye-Based Colorimetric Chemodosimeter for Cyanide in Aqueous Solution. Supramolecular Chemistry. 25 (1): 24–27.

Hong, S. J., Jaeduk, Y., Kim, S. H., Kim, J. S., Yoon, J. and Chang, H. L. (2009). β-Vinyl Substituted Calix[4]Pyrrole as a Selective Ratiometric Sensor for Cyanide Anion. Chemical Communications. 1 (2): 189–191.

Isaad, J. and Ahmida, E. A. (2011). A Novel Cyanide Chemodosimeter Based on Trifluoroacetamide Benzhydrol-2 as Binding Motif: Importance of Substituent Positioning on Intra-Molecular Charge Transfer. Tetrahedron. 67 (23): 4196–4201.

Jeong, Y. H., Chi,. L., and Woo, D. J. (2012). A Diketopyrrolopyrrole-Based Colorimetric and Fluorescent Probe for Cyanide Detection. Chemistry - An Asian Journal. 7 (7): 1562–1566.

Kaushik, R., Ghosh, A., Singh, A., Gupta, P., Mittal, A. and Jose, D. A. (2016). Selective Detection of Cyanide in Water and Biological Samples by an Off-the-Shelf Compound. ACS Sensors. 1 (10): 1265–1271.

Kim, D., Sang, Y. N. and Kim, H. J. (2016). A Fluorescence Turn-on Probe for a Catalytic Amount of Cyanides through the Cyanide-Mediated Cinnamate-to-Coumarin Transformation. Sensors and Actuators, B: Chemical. 226: 227–231.

Kim, G. J. and Kim, H. J. (2010). Coumarinyl Aldehyde as a Michael Acceptor Type of Colorimetric and Fluorescent Probe for Cyanide in Water. Tetrahedron Letters. 51 (21): 2914–2916.

Li, H., Zhi, W., Longyi, J., Yuhe, K. and Bingzhu, Y. (2012). A Coumarin–Meldrum’s Acid Conjugate Based Chemodosimetric Probe for Cyanide. Chemical Communications. 48 (95): 11659–11661.

Li, Z., Ying, Z., Kai, Y., Zhu, Y., Yan, L. and Jun, R. (2014). A New Fluorescence ‘Turn-on’ Type Chemosensor for Fe3+ Based on Naphthalimide and Coumarin. Dyes and Pigments. 105: 7–11.

Lim, B. and Jeeyeon, L. (2016). A Peptoid-Based Fluorescent Sensor for Cyanide Detection. Molecules. 21 (3).

Long, L., Meiyu, H., Ning, W., Yanjun, W., Kun, W., Aihua, G., Zhijian, Z. and Jonathan, L., S. (2018). A Mitochondria-Specific Fluorescent Probe for Visualizing Endogenous Hydrogen Cyanide Fluctuations in Neurons. Journal of the American Chemical Society. 140 (5): 1870–1875.

Maayan, G., Michael, D. W. and Kent, K. (2009). Metallopeptoids. Chemical Communications. 1: 56–58.

Mantulin, W. W. and Pill, S. S. (1973). Excited States of Skin-Sensitizing Coumarins and Psoralens. Spectroscopic Studies. Journal of the American Chemical Society. 95 (16): 5122–5129.

Marcus, Y. (1994). A Simple Empirical Model Describing the Thermodynamics of Hydration of Ions of Widely Varying Charges, Sizes, and Shapes. Biophysical Chemistry. 51 (2–3): 111–27.

Martínez-Máñez, R. and Félix, S. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews. 103(11): 4419-4476.

Nad, S., Kumbhakar, M. and Pal, H. (2003). Photophysical Properties of Coumarin-152 and Coumarin-481 Dyes: Unusual Behavior in Nonpolar and in Higher Polarity Solvents. Journal of Physical Chemistry. A 107 (24): 4808–4816.

Noipa, T., Thawatchai, T. and Wittaya, N. (2013). Cu2+-Modulated Cysteamine-Capped CdS Quantum Dots as a Turn-on Fluorescence Sensor for Cyanide Recognition. Talanta. 105: 320–326.

Park, S. and Kim, H. J. (2012). Sensors and Actuators B : Chemical Highly Selective Chemodosimeter for Cyanide Based on a Doubly Activated Michael Acceptor Type of Coumarin Thiazole Fluorophore H B. Sensors & Actuators: B. Chemical. 161 (1): 317–321.

Perkin, W. H. (1868). Coumarin By W. H. PERKIN, F.R.S. IT. Journal of the Chemical Society. 21: 53–63.

Razi, S. S., Rashid, A., Srivastava, P. and Misra, A. (2014). Simple Michael Acceptor Type Coumarin Derived Turn-on Fluorescence Probes to Detect Cyanide in Pure Water. Tetrahedron Letters. 55 (18): 2936–2941.

Richard, J. A., Massonneau, M., Renard, P. Y. and Romieu, A. (2008). Hybrids : A New Class of Far-Red Emitting Fluorogenic Dyes. 4: 2003–2006.

Shiraishi, Y., Masaya, N., Kohei, Y. and Takayuki, H. (2014). Rapid, Selective, and Sensitive Fluorometric Detection of Cyanide Anions in Aqueous Media by Cyanine Dyes with Indolium-Coumarin Linkages. Chemical Communications. 50 (78): 11583–11586.

Shiraishi, Y., Shigehiro, S., Kenji, M. and Takayuki, H. (2011). Thermoresponsive Copolymer Containing a Coumarin-Spiropyran Conjugate: Reusable Fluorescent Sensor for Cyanide Anion Detection in Water. ACS Applied Materials and Interfaces. 3 (12): 4649–4656.

Sun, X., Wang, Y., Zhang, X., Zhang, S. and Zhang, Z. (2015). A New Coumarin Based Chromo-Fluorogenic Probe for Selective Recognition of Cyanide Ions in an Aqueous Medium. RSC Advances. 5 (117): 96905–96910.

Sun, Y., Yuanyuan, W., Duxia, C., Huihui, C.n, Zhiqiang, L. and Qi, F. (2012). 3-Amidocoumarins as Chemodosimeters to Trap Cyanide through Both Michael and Intramolecular Cyclization Reaction. Sensors and Actuators, B: Chemical. 174: 500–505.

Tarafdar, D., Saha, I. and Ghosh, K. (2017). Coumarin-Based Urea-Amide Scaffold in Ratiometric Fluorescence Sensing of CN−. Tetrahedron Letters. 58 (21): 2038–2043.

Timofeyenko, Y. G., Jeffrey, J. R. and Susan, M. (2007). Piezoelectric Quartz Crystal Microbalance Sensor for Trace Aqueous Cyanide Ion Determination. Analytical Chemistry. 79 (1): 251–255.

Traven, V. F., Ivanov, I. V., Lebedev, V. S., Chibisova, T. A., Milevskii, B. G., Solov’Eva, N. P., Polshakov, V. I., Alexandrov, G. G., Kazheva, O. N. and Dyachenko, O. A. (2010). E/Z(C=C)-Isomerization of Enamines of 3-Formyl-4-Hydroxycoumarin Induced by Organic Solvents. Russian Chemical Bulletin. 59 (8): 1605–1611.

Vogel, A. (1820). Darstellung von Benzoesäure Aus Der Tonka‐Bohne Und Aus Den Meliloten ‐Oder Steinklee ‐Blumen. Annalen Der Physik. 64 (2): 161–166.

Wang, F., Li, W., Xiaoqiang, C. and Juyoung, Y. (2014). Recent Progress in the Development of Fluorometric and Colorimetric Chemosensors for Detection of Cyanide Ions. Chemical Society Reviews. 43 (13): 4312–4324.

Xiong, K., Fangjun, H., Caixia, Y., Yutao, Y., Jianbin, C., Yongbin, Z. and Ming, X. (2015). A Off-on Green Fluorescent Chemosensor for Cyanide Based on a Hybrid Coumarin-Hemicyanine Dye and Its Bioimaging. Sensors and Actuators, B: Chemical. 220: 822–828.

Xu, Z., Xiaoqiang, C., Ha, N. K. and Juyoung, Y. (2010). Sensors for the Optical Detection of Cyanide Ion. Chemical Society Reviews. 39 (1): 127–137.

Yang, Z., Zhipeng, L., Yuncong, C., Xiaoqing, W., Weijiang, H. and Yi, Lu. (2012). A New Ratiometric and Colorimetric Chemosensor for Cyanide Anion Based on Coumarin-Hemicyanine Hybrid. Organic and Biomolecular Chemistry. 10 (26): 5073–5076.

Yuan, L., Weiying, L. and Jizeng, S. (2010). Ratiometric Fluorescent Detection of Intracellular Hydroxyl Radicals Based on a Hybrid Coumarin-Cyanine Platform. Chemical Communications. 46 (42): 7930–3792.

Published
2021-08-30
How to Cite
Sengupta, S., Pal, N., & Bhattacharyya, A. (2021). Synthesis of Coumarin Based Chemo-Sensors for the Detection of CN¯ Ions. International Journal of Experimental Research and Review, 25, 18-33. https://doi.org/10.52756/ijerr.2021.v25.003
Section
Articles