Click Chemistry: copper, ruthenium catalyzed and photoinduced

Authors

  • Aayushmoti Biswas Department of Chemistry, Seth Anandram Jaipuria College, Kolkata-700005, West Bengal, India
  • Debabrata Singha Department of Chemistry, Visva-Bharati University, Santiniketan, Birbhum-731235, West Bengal, India
  • Nilasish Pal Department of Chemistry, Seth Anandram Jaipuria College, Kolkata-700005, West Bengal, India http://orcid.org/0000-0002-7206-5407

DOI:

https://doi.org/10.52756/ijerr.2021.v26.004

Keywords:

Click chemistry, Azide-alkyne cycloaddition (AAC), medicinal chemistry, synthetic chemistry

Abstract

Click chemistry is an extremely powerful method for covalent conjugation of molecular entities quickly and efficiently. Click chemistry knitted the threads between two different molecular entities that have created interesting structures for more than 15 years with a wide range of applications, including in interesting fields such as synthetic chemistry, medicinal science, biochemistry, material science, pharmacology and catalysis. Due to the schematic modification and incorporation of azide and alkyne groups within biological scaffolds, azide-alkyne cycloaddition (AAC) is still the leading methodology among click chemistry. This review focuses on the mechanism, scope, and applications of the CuAAC reaction, RuAAC reaction, and the recent development of photo-click reactions, and their applications cover the literature from the last ten years.

References

Adzima, B. J., Tao, Y., Kloxin, C. J., DeForest, C. A., Anseth, K. S. and Bowman, C. N. (2011). Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chemistry. 3(3): 256–259.

Agard, N. J., Prescher, J. A. and Bertozzi, C. R. (2004). A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society. 126(46): 15046–15047.

Andersen, J., Bolvig, S. and Liang, X. (2005). Efficient one-pot synthesis of 1-aryl 1,2,3-triazoles from aryl halides and terminal alkynes in the presence of sodium azide. Synlett. 19: 2941–2947.

Arumugam, S. and Popik, V. V. (2011). Light-induced hetero-diels-alder cycloaddition: A facile and selective photoclick reaction. Journal of the American Chemical Society. 133(14): 5573–5579.

Boren, B. C., Narayan, S., Rasmussen, L. K., Zhang, L., Zhao, H., Lin, Z., Jia, G. and Fokin, V. V. (2008). Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. Journal of the American Chemical Society. 130(28): 8923–8930.

Ess, D. H., Jones, G. O. and Houk, K. N. (2008). Transition states of strain-promoted metal-free click chemistry: 1, 3-dipolar cycloadditions of phenyl azide and cyclooctynes. Organic Letters. 10(8): 1633–1636.

Han, X. (2007). A practical and expedient synthesis of 2-heterocycle (C-N bond) substituted 4-oxo-4-arylbutanoates. Tetrahedron Letters. 48(16): 2845–2849.

Herner, A. and Lin, Q. (2016). Photo-Triggered Click Chemistry for Biological Applications. Topics in Current Chemistry. 374(1): 1.

Huisgen, R. (1963a). 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English. 2(10): 565–598.

Huisgen, R. (1963b). Kinetics and Mechanism of 1,3-Dipolr Cycloadditions. Angewandte Chemie International Edition in English. 2(11): 633–645.

Huisgen, R. (1989). Examples From the Experience of Forty Years. Pure and Applied Chemistry. 61(4): 613–628.

Huisgen, R., Szeimies, G. and Möbius, L. (1967). 1.3‐Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC‐Mehrfachbindungen. Chemische Berichte. 100(8): 2494–2507.

Lim, R. K. V., & Lin, Q. (2010). Azirine ligation: Fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. Chemical Communications. 46(42): 7993–7995.

Liu, P. N., Li, J., Su, F. H., Ju, K. D., Zhang, L., Shi, C., Sung, H. H. Y., Williams, I. D., Fokin, V. V., Lin, Z. and Jia, G. (2012). Selective formation of 1,4-disubstituted triazoles from ruthenium-catalyzed cycloaddition of terminal alkynes and organic azides: Scope and reaction mechanism. Organometallics. 31(13): 4904–4915.

Pachón, L. D., Van Maarseveen, J. H. and Rothenberg, G. (2005). Click chemistry: Copper clusters catalyse the cycloaddition of azides with terminal alkynes. Advanced Synthesis and Catalysis. 347(6): 811–815.

Pauloehrl, T., Delaittre, G., Bruns, M., Meißler, M., Börner, H. G., Bastmeyer, M. and Barner-Kowollik, C. (2012). (Bio)molecular surface patterning by phototriggered oxime ligation. Angewandte Chemie - International Edition. 51(36): 9181–9184.

Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. and Berkland, C. J. (2018). Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition. Bioconjugate Chemistry. 29(3): 686–701.

Pokorski, J. K., Miller Jenkins, L. M., Feng, H., Durell, S. R., Bai, Y. and Appella, D. H. (2007). Introduction of a triazole amino acid into a peptoid oligomer induces turn formation in aqueous solution. Organic Letters. 9(12): 2381–2383.

Poloukhtine, A. A., Mbua, N. E., Wolfert, M. A., Boons, G. J. and Popik, V. V. (2009). Selective labeling of living cells by a photo-triggered click reaction. Journal of the American Chemical Society. 131(43): 15769–15776.

Singh, K., Fennell, C. J., Coutsias, E. A., Latifi, R., Hartson, S. and Weaver, J. D. (2018). Light Harvesting for Rapid and Selective Reactions: Click Chemistry with Strain-Loadable Alkenes. Chem. 4(1): 124–137.

Sreedhar, B. and Reddy, P. S. (2007). Sonochemical synthesis of 1,4-disubstituted 1,2,3-triazoles in aqueous medium. Synthetic Communications. 37(5): 805–812.

Tam, A., Arnold, U., Soellner, M. B. and Raines, R. T. (2007). Protein prosthesis: 1,5-Disubstituted [1,2,3] triazoles as cis-peptide bond surrogates. Journal of the American Chemical Society. 129(42): 12670–12671.

Tornøe, C. W., Christensen, C. and Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. Journal of Organic Chemistry. 67(9): 3057–3064.

Tornøe, C. W. and Meldal, M. (2001). Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions on Solid-Phase. Peptides: The Wave of the Future. i: 263–264.

Wang, C., Ikhlef, D., Kahlal, S., Saillard, J. Y. and Astruc, D. (2016). Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews. 316: 1–20.

Zhang, Li, Chen, X., Xue, P., Sun, H. H. Y., Williams, I. D., Sharpless, K. B., Fokin, V. V. and Jia, G. (2005). Ruthenium-catalyzed cycloaddition of alkynes and organic azides. Journal of the American Chemical Society. 127(46): 15998–15999.

Zhang, Linmeng, Zhang, X., Yao, Z., Jiang, S., Deng, J., Li, B. and Yu, Z. (2018). Discovery of Fluorogenic Diarylsydnone-Alkene Photoligation: Conversion of ortho-Dual-Twisted Diarylsydnones into Planar Pyrazolines. Journal of the American Chemical Society. 140(24): 7390–7394.

Downloads

Published

2021-12-30

How to Cite

Biswas, A., Singha, D., & Pal, N. (2021). Click Chemistry: copper, ruthenium catalyzed and photoinduced. International Journal of Experimental Research and Review, 26, 45–69. https://doi.org/10.52756/ijerr.2021.v26.004

Issue

Section

Articles