Oligothiophenes: Synthesis and Optoelectronic Properties

  • Dibbendu Saha Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Naba Krishna Street, Kolkata, West Bengal, India
  • Nilasish Pal Department of Chemistry, Seth Anandram Jaipuria College, 10, Raja Naba Krishna St, Raja Nabakrishna Street Kolkata, West Bengal, India
Keywords: OLED, oligothiophenes, organic photovoltaics, Rozen’s reagent, Suzuki coupling

Abstract

Oligothiophenes give a magnificent opportunity to explore its different synthesis and uses as in optoelectrical devices nowadays. In contrast, oligothiophenes afford higher purity and easy modification with several functional groups than their polymer counterparts. Recent work on functional oligothiophenes of advanced materials for organic electronic devices has been developed. In this study, the synthesis and characterisation of linear and fused oligothiophenes (e.g., oxidative coupling, palladium catalysed C-H homocoupling and cross-coupling) emphasises applications in various areas are addressed.

References

Albano, G. and Laura, A. A. (2020). Acyl Sonogashira Cross-Coupling: State of the Art and Application to the Synthesis of Heterocyclic Compounds. Catalysts. 10 (1): 25.

Asoh, T., Kohsuke, K. and Kazuo, T. (2020). Carbonyl-Terminated Quinoidal Oligothiophenes as P-Type Organic Semiconductors. Materials. 13 (13): 3020.

Bach, B. U., Kenny, D. C. and Hubert, S. (2000). Characterization of Hole Transport in a New Class. Advanced Materials. 12 (14): 1060–1063.

Beaujuge, P. M. and Jean, M. J. F. (2011). Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications. Journal of the American Chemical Society. 133 (50): 20009–20029.

Brédas, J. L., Demetrio, A. D. S. F. and Jeromr, C. (2002). Organic Semiconductors: A Theoretical Characterization of the Basic Parameters Governing Charge Transport. Proceedings of the National Academy of Sciences of the United States of America. 99 (9): 5804–5809.

Chen, Shiyan, Xinjun, X., Yunqi, L., Wenfeng, Q., Gui, Y., Huaping, W. and Daoben, Z. (2007). New Organic Light-Emitting Materials: Synthesis, Thermal, Photophysical, Electrochemical, and Electroluminescent Properties. Journal of Physical Chemistry. C 111 (2): 1029–1034.

Cremer, J. and Christoph, A. B. (2007). Novel Highly Fluorescent Triphenylamine-Based Oligothiophenes. Chemistry of Materials. 19 (17): 4155–4165.

de, M., Stefan, B. and Martin, O. (2013). Metal Catalyzed Cross-Coupling Reactions and More 1,2 and 3. Metal Catalyzed Cross-Coupling Reactions and More. Vol. 3.

Dressler, J. J., Mitsuru, T., Guzmán, L. E., Ryohei, K., Shota, T., Carlos, J. G. G., Lev, N. Z., Masayoshi, N., Juan, C. and Michael, M. H. (2018). Thiophene and Its Sulfur Inhibit Indenoindenodibenzothiophene Diradicals from Low-Energy Lying Thermal Triplets. Nature Chemistry. 10(11):1134–1140.

Edder, C. and Jean, M. J. (2003). Synthesis of Bridged Oligothiophenes : Toward a New Class of Thiophene-Based Electroactive Surfactants. Org. Lett. 5(11): 1879-1882.

Emma, J. D. and Luis, M. C. (2012). The Preparation of Thiophene- S, S -Dioxides and Their Role in Organic Electronics. J. Mater. Chem. 22: 12945–12952.

Emmi, S. S., Milla, D. A., Giovanna, P., Nomi, C., Geri, A., Martelli, A., Pietropaolo, D. and Zotti, G. (1998). The Spectral Characterization of Thiophene Radical Cation Generated by Pulse Radiolysis. Research on Chemical Intermediates. 24 (1): 1–14.

Endou, M. and Yoshio, A. (2012). Encapsulated oligothiophenes having electron-affinity characteristics. Chem. Commun (Camb). 48(4):540-542.

Fujii, M., Tohru, N. and Masahiko, I. (2009). Synthesis of Thiophene-Pyrrole Mixed Oligomers End-Capped with Hexyl Group for Field-Effect Transistors. Tetrahedron Letters. 50 (5): 555–558.

Gann, E., Brian, A. C., Maolong, T., John, R. T., Subrangsu ,M. and Harald, A. (2016). Origins of Polarization-Dependent Anisotropic X-Ray Scattering from Organic Thin Films. Journal of Synchrotron Radiation. International Union of Crystallography. 23: 219–227.

Hagfeldt, A., Gerrit, B., Licheng, S., Lars, K. and Henrik, P.(2010). Dye-Sensitized Solar Cells. Chem. Rev. 110(11): 6595-6663.

Lee, Y., Yoshikazu, U., Takahiro, K. and Yoshio, A. (2006). Electronegative Oligothiophenes Based on a Hexafluorocyclopentene-Annelated Thiophene Unit. Organic Letters. 8 (23): 5381–5384.

Lee, Y., Toshihiko, U., Nobuhiro, Y. and Yoshio, A. (2009). Dendritic Oligothiophene Bearing Perylene Bis(dicarboximide) Groups as an Active Material for Photovoltaic Device. Chemical Communications. 10: 1213–1215.

Imae, I., Keisuke, K., Yousuke, O., Kenji, K. and Yutaka, H. (2015). Synthesis of Novel Dyes Having EDOT-Containing Oligothiophenes as P -Linker for Panchromatic Dye-Sensitized Solar Cells. Synthetic Metals. 207: 65–71.

Kepmenkes Keselamatan Pasien Rumah Sakit. (2011). Phys. Rev. E, 24.

Körzdörfer, T. and Jean, L. B. (2014). Organic Electronic Materials: Recent Advances in the Dft Description of the Ground and Excited States Using Tuned Range-Separated Hybrid Functionals. Accounts of Chemical Research. 47 (11): 3284–3291.

Lee, K., William, P. G., Elli, A. T., Wenzheng, C. and Robert, E. M. (2006). One-Pot Pd-Catalyzed hydrostannation/Stille Reaction with Acid Chlorides as the Electrophiles. Journal of Organometallic Chemistry. 691 (8): 1462–1465.

Liang, Y., Bo, P., Jing, L., Zhanliang, T. and Jun, C. (2010). Triphenylamine-Based Dyes Bearing Functionalized 3,4- Propylenedioxythiophene Linkers with Enhanced Performance for Dye-Sensitized Solar Cells. Organic Letters. 12(6):1204–1207.

Links, Dynamic Article. (2012). Chem Soc Rev Quinoidal Oligothiophenes : New Properties behind an Unconventional Electronic Structure. Pp. 5672–6686.

Lu, J., Xiaobao, X., Kun, C., Jin, C., Yibo, Z., Yan, S., Xiaobo, S., Liangsheng, L., Yibing, C. and Mingkui, W. (2013). D-π-A Structured Porphyrins for Efficient Dye-Sensitized Solar Cells. Journal of Materials Chemistry. A 1 (34): 10008–10015.

Luo, J., Kuo, W. H., Hemi, Q., Xiaojie, Z., Lijun, Z., Hardy, S. O. C. and Chunyan, C. (2010). H-Shaped Oligothiophenes with Low Band Gaps and Amphoteric Redox Properties. Organic Letters. 12 (24): 5660–5663.

Mannebach, E. M., Josef, W. S., Phillip, S. J., Zhonghou, C. and Paul, G. E. (2013). High Hole Mobility and Thickness-Dependent Crystal Structure in α,ω-Dihexylsexithiophene Single-Monolayer Field-Effect Transistors. Advanced Functional Materials. 23(5): 554–564.

McCullough, R. D. (1998). The Chemistry of Conducting Polythiophenes.Advanced Materials. 10 (2): 93–116.

Mishra, A. and Peter, B. (2012). Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology. Angewandte Chemie - International Edition. 51 (9): 2020–2067.

Mitschke, U. and Peter, B. (2000). The Electroluminescence of Organic Materials. Journal of Materials Chemistry. 10 (7): 1471–1507.

Mowbray, D. J., Robert, G. J. and Kristian, S. T. (2008). Influence of Functional Groups on Charge Transport in Molecular Junctions. Journal of Chemical Physics. 128 (11): 1–6.

Murphy, A. R. and Jean, M. J. F. (2007). Organic Semiconducting Oligomers for Use in Thin Film Transistors. Chem Rev. 510: 1066–1096.

Myung, N., Yoonjung, B. and Allen, J. B. (2003). Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3 by Oxygen Passivation of Surface States. Nano Letters. 3 (6): 747–749.

Niebel, C., Maud, J., Christelle, G. and Yves, H. G. (2012). Bridged 3,3″′-Didodecylquaterthiophene-Based Dimers: Design, Synthesis, and Optoelectronic Properties.Tetrahedron. 68 (27-28): 5599–5605.

Ohshita, J., Yuki, I., Dongha, K., Atsutaka, K. and Takao, K. (2007). Applications of Silicon-Bridged Oligothiophenes to Organic FET Materials. Organometallics. 26 (25): 6150–6154.

Ooyama, Y. and Yutaka, H. (2009). Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. European Journal of Organic Chemistry. 18: 2903–2934.

Osaka, I. (2015). Semiconducting Polymers Based on Electron-Deficient π-Building Units. Polymer Journal. Nature Publishing Group. 47 (1): 18–25.

Pernstich, K. P., Haas, S., Oberhoff, D., Goldmann, C., Gundlach, D. J., Batlogg, B., Rashid, A. N. and Schitter, G. (2004). Threshold Voltage Shift in Organic Field Effect Transistors by Dipole Monolayers on the Gate Insulator. Journal of Applied Physics. 96(11):6431–3648.

Potash, S. and Shlomo, R. (2011). All-S,S-Dioxygenated Star Oligothiophenes. Journal of Organic Chemistry 76 (17): 7245–7248.

Ribierre, J. C., Satoshi, W., Mutsuyoshi, M., Tsuyoshi, M., Aiko, N. and Tetsuya, A. (2010). Reversible Conversion of the Majority Carrier Type in Solution-Processed Ambipolar Quinoidal Oligothiophene Thin Films. Advanced Materials. 22 (36): 4044–4048.

Rivnay, J., Leslie, H. J., John, E. N., Michael, F. T., Rodrigo, N., Shaofeng, L., Tobin, J. M., Antonio, F. and Alberto, S. (2009). Large Modulation of Carrier Transport by Grain-Boundary Molecular Packing and Microstructure in Organic Thin Films. Nature Materials. 8 (12): 952–58.

Rost, C., Siegfried, K., Walter, R., Maria, A. L., Mauro, M. and Michele, M. (2004). Light-Emitting Ambipolar Organic Heterostructure Field-Effect Transistor. Synthetic Metals 146 (3): 237–241.

Rozen, S. (2005). Elemental Fluorine and HOF•CH3CN in Service of General Organic Chemistry. European Journal of Organic Chemistry. 2005 (12): 2433–2447.

Schuettfort, T., Benjamin, W., Lars,T., Mijung, L., Henning, S. and Christopher, R. M. (2012). Microstructure of Polycrystalline PBTTT Films: Domain Mapping and Structure Formation. ACS Nano. 6 (2): 1849–1864.

Schulze, K., Christian, U., Rico, S., Karl, L., Martin, P., Eduard, B., Egon, R. and Peter, B. (2006). Efficient Vacuum-Deposited Organic Solar Cells Based on a New Low-Bandgap Oligothiophene and Fullerene C60. Advanced Materials. 18 (21): 2872–2875.

Shi, S., Pei, J., Song, C., Yeping, S., Xiaochen, W., Kai, W., Suling, S., Xiaoyu, L., Yongfang, L. and Haiqiao, W. (2012). Effect of Oligothiophene π-Bridge Length on the Photovoltaic Properties of D-A Copolymers Based on Carbazole andQuinoxalinoporphyrin. Macromolecules. 45 (19): 7806–7814.

Takimiya, K., Katsuhiro, S., Tetsuo, O. and Yoshihito, K. (2006). Thin Film Characteristics and FET Performances of β-Octyl-Substituted Long Oligothiophenes. Chemistry Letters. 35(8):942–943.

Tan, L., Lei, Z., Xi, J., Xiaodi, Y., Linjun, W., Zhaohui, W. and Qiang, L. (2009). A Densely and Uniformly Packed Organic Semiconductor Based on Annelated β-Trithiophenes for High-Performance Thin Film Transistors. Advanced Functional Materials. 19 (2): 272–276.

Tanaka, S., Shunsuke ,T., Daiki, T., Atsushi, S. and Atsunori, M. (2011). Synthesis of Well-Defined Head-to-Tail-Type Oligothiophenes by. Journal of American Chemical Society (JACS). 16734–16737.

Teiber, M. and Thomas, J. J. M. (2012). Rapid Consecutive Three-Component Coupling-Fiesselmann Synthesis of Luminescent 2,4-Disubstituted Thiophenes and Oligothiophenes. Chemical Communications. 48 (15): 2080–2082.

Thomas, K. R. J., Jiann, T. L., Yu, T. T. and Chung, W. K. (2002). New Star-Shaped Luminescent Triarylamines: Synthesis, Thermal, Photophysical, and Electroluminescent Characteristics. Chemistry of Materials. 14 (3): 1354–1361.

Yuan, D. (2019). Stable N-Doped Conductors Enabled by Organic Diradicals. Chem 5 (4): 744–45.

Zade, S. S., Natalia, Z. and Michael, B. (2011). From Short Conjugated Oligomers to Conjugated Polymers. Lessons from Studies on Long Conjugated Oligomers. Accounts of Chemical Research. 44 (1): 14–24.

Zhang, L., Nicholas, S. C., Benjamin, P. C., Stefan, C. B. M., and Alejandro, L. B. (2014). Oligothiophene Semicon-ductors : Synthesis, Characterization , and Applications for Organic Devices. ACS Appl. Mater. Interfaces. 6 (8): 5327–5343.

Published
2021-08-30
How to Cite
Saha, D., & Pal, N. (2021). Oligothiophenes: Synthesis and Optoelectronic Properties. International Journal of Experimental Research and Review, 25, 66-83. https://doi.org/10.52756/ijerr.2021.v25.007
Section
Articles