Luminescent metal-organic frameworks

Authors

DOI:

https://doi.org/10.52756/ijerr.2021.v26.008

Keywords:

Chemical sensor, Luminescence, Metal–organic frameworks (MOFs)

Abstract

Metal-organic frameworks (MOFs) show a wide range of luminescent behaviours. In this review, there is a brief discussion on the origins of MOF luminosity due to various type of linkers and their special arrangement in MOFs, the structure and synthesis of the multiple kinds of linker-based luminescent MOFs. Finally, luminescent MOFs as the chemical sensor has been discussed. This article will be helpful for researchers and synthetic chemists attempting for designing luminescent MOFs and their application as a chemical sensor.

References

Allendorf, M. D., Bauer, C. A., Bhakta, R. K. and Houk, R. J. T. (2009). Luminescent metal-organic frameworks. Chemical Society Reviews. 38(5): 1330–1352.

Bai, Y., He, G., Zhao, Y., Duan, C., Dang, D. and Meng, Q. (2006). Porous material for Absorption and Luminescent Detection of Aromatic Molecules in Water. 1(14): 1530–1532.

Bauer, C. A., Timofeeva, T. V, Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. and Allendorf, M. D. (2007). Influence of connectivity and porosity on ligand-based lumin-escence in zinc metal-organic frameworks. Journal of the American Chemical Society. 129(22): 7136–7144.

Cahill, C. L., De Lill, D. T. and Frisch, M. (2007). Homo- and heterometallic coordination polymers from the f elements. Cryst. Eng. Comm. 9(1): 15–26.

Chen, B., Wang, L., Zapata, F., Qian, G. and Lobkovsky, E. B. (2008). A Luminescent Microporous Metal - Organic Framework for the Recognition. J. Am. Chem. Soc. 130: 6718–6719.

Chen, B., Yang, Y., Zapata, F., Lin, G., Qian, G. and Lobkovsky, E. B. (2007). Luminescent open metal sites within a metal-organic framework for sensing small molecules. Advanced Materials. 19(13): 1693–1696.

Chen, Z. F., Xiong, R. G., Zhang, J., Chen, X. T., Xue, Z. L. and You, X. Z. (2001). 2D molecular square grid with strong blue fluorescent emission: A complex of norfloxacin with zinc(II). Inorganic Chemistry. 40(16): 4075–4077.

Colacio, E., Kivekǎs, R., Lloret, F., Sunberg, M., Suarez-Varela, J., Bardají, M. and Laguna, A. (2002). Architecture dependence on the steric constrains of the ligand in cyano-bridged copper(I) and copper(II)-copper(I) mixed-valence polymer compounds containing diamines: Crystal structures and spectroscopic and magnetic properties. Inorganic Chemistry. 41(20): 5141–5149.

Dai, J.-C., Hu, S.-M., Wu, X.-T., Fu, Z.-Y., Du, W.-X., Zhang, H.-H. and Sun, R.-Q. (2003). A novel 2D bilayer architecture generated via π-π interactions and host–guest molecular recognition: assembly and structure of {[Cd(Htma) (bpy)(H2O)]•(H2tp)0.5•2H2O} n polymer (tma = trimesate, bpy = 4,4′-bipyridine, tp = terephthalate). New J. Chem. 27(6), 914–918.

Dai, J. C., Wu, X. T., Fu, Z. Y., Hu, S. M., Du, W. X., Cui, C. P., Wu, L. M., Zhang, H. H. and Sun, R. Q. (2002). A novel ribbon-candy-like supramolecular architecture of cadmium(II)-terephthalate polymer with giant rhombic channels: twofold interpenetration of the 3D 8210-a net. Chemical Communications. 2(1): 12–13.

De Lill, D. T., De Bettencourt-Dias, A. and Cahill, C. L. (2007). Exploring lanthanide luminescence in metal-organic frameworks: synthesis, structure, and guest-sensitized luminescence of a mixed europium/terbium-adipate frame-work and a terbium-adipate framework. Inorganic Chemistry. 46(10): 3960–3965.

Doty, F. P., Bauer, C. A., Skulan, A. J., Grant, P. G. and Allendorf, M. D. (2009). Scintillating metal-organic frame-works: A new class of radiation detection materials. Advanced Materials. 21(1): 95–101.

Du, J. L., Hu, T. L., Li, J. R., Zhang, S. M. and Bu, X. H. (2008). Metal coordination architectures of 2,3-bis(triazol-1-ylmethyl)quinoxaline: Effect of metal ion and counterion on complex structures. European Journal of Inorganic Chemistry. 7: 1059–1066.

Fan, J., Zhu, H. F., Okamura, T. A., Sun, W. Y., Tang, W. X. and Ueyama, N. (2003). Three-dimensional photoluminescent pillared metal-organic framework with 4.82 topological channels obtained from the assembly of cadmium(II) acetate and trimellitic salt. New Journal of Chemistry. 27(10): 1409–1411.

Feng, W., Xu, Y., Zhou, G., Zhang, C. and Zheng, X. (2007). Hydrothermal synthesis, crystal structure and strong blue fluorescence of a novel 3D coordination polymer containing copper and zinc centers linked by isonicotinic acid ligands. Inorganic Chemistry Communications. 10(1): 49–52.

Frisch, M. and Cahill, C. L. (2005). Syntheses, structures and fluorescent properties of two novel coordination polymers in the U-Cu-H3pdc system. Dalton Transactions. 8: 1518–1523.

Garg, T. K. and Mittal, P. (2021). Logistics networks: a sparse matrix application for solving the transshipment problem. Journal of Mathematical and Computational Science. 11(6): 7511–7522.

Gunning, N. S. and Cahill, C. L. (2005). Novel coordination polymers and structural systematics in the hydrothermal M,M′ trans-3(-3-pyridyl)acrylic acid system. Dalton Transactions. 3(16): 2788–2792.

Hu, Z., Deibert, B. J. and Li, J. (2014). Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews. 43(16): 5815–5840.

Huang, F. and Anslyn, E. V. (2015). Introduction: Supramolecular Chemistry. Chemical Reviews. 115(15): 6999.

Huang, Y., Ding, B., Song, H., Zhao, B., Ren, P., Cheng, P., Wang, H., Liao, D.-Z. and Yan, S. P. (2006). A novel 3D porous metal–organic framework based on trinuclear cadmium clusters as a promising luminescent material exhibiting tunable emissions between UV and visible wavelengths. Chem. Commun. 366(47): 4906–4908.

Janiak, C. (2003). Engineering coordination polymers towards applications. Journal of the Chemical Society. Dalton Transactions. 3(14): 2781–2804.

Lee, E. Y., Jang, S. Y. and Suh, M. P. (2005). Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal−Organic Framework [Zn4O(NTB)2]. Journal of the American Chemical Society. 127(17): 6374–6381.

Li, M. X., Miao, Z. X., Shao, M., Liang, S. W. and Zhu, S. R. (2008). Metal-organic frameworks constructed from 2,4,6-tris(4-pyridyl)-1,3,5- triazine. Inorganic Chemistry. 47(11): 4481–4489.

Lill, D. T. De, Gunning, N. S., Cahill, C. L. and George, T. (2004). Toward Templated Metal − Organic Frameworks : Synthesis , Structures , Thermal Properties , and Luminescence of Three Novel Lanthanide − Adipate Frameworks. Inorganic Chemistry. 44(2): 258–266.

Limpouchová, Z. and Procházka, K. (2016). Fluorescence Studies of Polymer Containing Systems (K. Procházka (ed.). Vol. 16.

Lu, W. G., Jiang, L., Feng, X. L. and Lu, T. B. (2006). Three 3D coordination polymers constructed by Cd(II) and Zn(II) with imidazole-4,5-dicarbo-xylate and 4,4′-bipyridyl building blocks. Crystal Growth and Design. 6(2): 564–571.

McManus, G. J., Perry IV, J. J., Perry, M., Wagner, B. D. and Zaworotko, M. J. (2007). Exciplex fluorescence as a diagnostic probe of structure in coordination polymers of Zn2+ and 4,4′-bipyridine containing inter-calated pyrene and enclathrated aromatic solvent guests. Journal of the American Chemical Society. 129(29): 9094–9101.

Mittal, P. (2019). Impact of Auto-regressive (AR) Process in Bullwhip Analysis in a Multi-location Supply Chain Network. Journal of Business Management and Information Systems. 6(1): 19–26.

Orellana, G. (2006). FLUORESCENCE-BASED SENSORS. In Optical Chemical Sensors. Pp. 99–116.

Ouyang, X. M., Li, Z. W., Okamura, T., Li, Y. Z., Sun, W. Y., Tang, W. X. and Ueyama, N. (2004). Construction of metal-organic frameworks through coordination and hydrogen bonding interactions: Syntheses, structures and photoluminescent properties of metal complexes with macrocyclic ligand. Journal of Solid State Chemistry. 177(1): 350–360.

Pham, B. T. N., Lund, L. M. and Song, D. (2008). Novel Luminescent Metal-Organic Frameworks [Eu2L3(DMSO)2 (MeOH)2 ]•2DMSO•3H2O and [Zn2L2(DMSO)2]•1.6H2O (L = 4,4′-Ethyne-1,2-diyldibenzoate). Inorganic Chemistry. 47(14): 6329–6335.

Pickup, J. C., Hussain, F., Evans, N. D., Rolinski, O. J. and Birch, D. J. S. (2005). Fluorescence-based glucose sensors. Biosensors and Bioelectronics. 20(12): 2555–2565.

Rao, X., Huang, Q., Yang, X., Cui, Y., Yang, Y., Wu, C., Chen, B., & Qian, G. (2012). Color tunable and white light emitting Tb 3+ and Eu 3+ doped lanthanide metal-organic framework materials. Journal of Materials Chemistry. 22(7): 3210–3214.

Reineke, T. M., Eddaoudi, M., Fehr, M., Kelley, D. and Yaghi, O. M. (1999). From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. Journal of the American Chemical Society. 121(8): 1651–1657.

Rieter, W. J., Taylor, K. M. L. and Lin, W. (2007). Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. Journal of the American Chemical Society. 129(32): 9852–9853.

Rosen, D. L., Sharpless, C. and McGown, L. B. (1997). Bacterial Spore Detection and Determination by Use of Terbium Dipicolinate Photoluminescence. Analytical Chemistry. 69(6): 1082–1085.

Rowsell, J. L. C. and Yaghi, O. M. (2004). Metal-organic frameworks: A new class of porous materials. Microporous and Mesoporous Materials. 73(1–2): 3–14.

Sengupta, S., Pal, N. and Bhattacharyya, A. (2021). Synthesis of Coumarin Based Chemo-Sensors for the Detection of CN¯ Ions. International Journal of Experimental Research and Review. 25: 18–33.

Tachikawa, T., Choi, J. R., Fujitsuka, M. and Majima, T. (2008). Photoinduced charge-transfer processes on MOF-5 nanoparticles: Elucidating differences between metal-organic frameworks and semiconductor metal oxides. Journal of Physical Chemistry C. 112(36): 14090–14101.

Wang, X., Bi, Y., Lin, H. and Liu, G. (2007). Three Novel Cd(II) Metal−Organic Frameworks Constructed from Mixed Ligands of Dipyrido [3,2- d :2‘,3‘- f ]quinoxaline and Benzene-dicarboxylate: From a 1-D Ribbon, 2-D Layered Network, to a 3-D Architecture. Crystal Growth & Design. 7(6): 1086–1091.

Wolfbeis, O. S. (2005). Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry. 15(27–28): 2657–2669.

Yang, E. C., Li, J., Ding, B., Liang, Q. Q., Wang, X. G. and Zhao, X. J. (2008). An eight-connected 3D lead(II) metal-organic framework with octanuclear lead(II) as a secondary building unit: Synthesis, characterization and luminescent property. Cryst. Eng. Comm. 10(2): 158–161.

Yin, P.X., Zhang, J., Li, Z.J., Qin, Y.Y., Cheng, J.K., Zhang, L., Lin, Q.P. and Yao, Y.G. (2009). Supramolecular Isomerism and Various Chain/Layer Substructures in Silver(I) Compounds: Syntheses, Structures, and Luminescent Properties. Crystal Growth & Design. 9(11): 4884–4896.

Zhou, C.-S. and Zhang, G.-C. (2008). Crystal structure of poly-aqua[(pyridine-2,6-dicarboxylic acid N-oxide) (4,4’-bipyridine)nickel(II)] dihydrate, (Ni(C7H3NO5) (C10N2H8)0.5(H2O))•2H2O. Zeitschrift Für Kristallographie - New Crystal Structures. 223(2): 175–176.

Downloads

Published

2021-12-30

How to Cite

Biswas, S., Singha, D., & Pal, N. (2021). Luminescent metal-organic frameworks. International Journal of Experimental Research and Review, 26, 99–113. https://doi.org/10.52756/ijerr.2021.v26.008

Issue

Section

Articles