The genetic aspect of musicality, perfect pitch and congenital Amusia
DOI:
https://doi.org/10.52756/ijerr.2021.v25.009Keywords:
Amusia, music genetics, music perception, music productionAbstract
As one of the most important aspects of art, music is also a part of human biology and has had a significant influence on human evolution and development. In addition, it is an essential component of cultural heritage. Both hereditary and environmental variables are thought to play a role in developing and manifesting musical talent. Although environmental variables affecting musical ability have been extensively studied, genetic influences are less well understood. The genetic influence was strongly supported in studies of a random population, twins, and families of talented musicians. Linkage analysis, variation in gene copy number, and scanning for whole-genome expression were among the modern biomolecular methods used to discover genes or chromosomal areas linked to musical ability. Singing and music perception have been linked to many loci on chromosome 4, while absolute pitch and music perception have been linked to specific loci on chromosome 8q. Music perception, memory, and listening have all been linked to the AVPR1A gene on chromosome 12q, while SLC6A4 on chromosome 17q has been linked to music memory and choir involvement.
References
Aarde, S. M. and Jentsch, J. D. (2006). Haploinsufficiency of the arginine-vasopressin gene is associated with poor spatial working memory performance in rats. Horm. Behav. 49: 501–508.
Adam, I., Mendoza, E., Kobalz, U., Wohlgemuth, S. and Scharff, C. (2016). FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Molecular and Cellular Neuroscience. 74: 96–105.
Albers, H. E., Karom, M. and Smith, D. (2002). Serotonin and vasopressin interact in the hypothalamus to control communicative behavior. Neuroreport. 13: 931–933.
Alcock, K. J., Passingham, R. E., Watkins, K. and Vargha, K. F. (2000). Pitch and timing abilities in inherited speech and language impairment. Brain Lang. 75: 34–46.
Alkan, C., Coe, B. P. and Eichler, E. E. (2011). Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12: 363–376.
Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., Sella, S., Nemanov, L., Gritsenko, I., Lichtenberg, P., Granot, R. and Ebstein, R. P. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genet. 1: e42.
Baharloo, S., Johnston, P. A., Service, S. K., Gitschier, J. and Freimer, N. B. (1998). Absolute pitch: an approach for identification of genetic and nongenetic components. Am. J. Human. Genet. 62: 224–231.
Baharloo, S., Service, S. K., Risch, N., Gitschier, J. and Freimer, N. B. (2000). Familial aggregation of absolute pitch. Am. J. Hum. Genet. 67: 755–758.
Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H. and Young, L. J. (2004). Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology. 29: 483–493.
Bochud, M. (2012). Estimating heritability from nuclear family and pedigree data. In: Elston R. C., Satagopan J. M., Sun S. (eds) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 171–186.
Brauchli, C., Leipold, S. and Jäncke, L. (2019). Univariate and multivariate analyses of functional networks in absolute pitch. Neuroimage. 189:241–247.
Brans, R. G. H., Kahn, R., Schnack, H. G., Van, Baal, G. C. M., Posthuma, D. and Van, H. N. E. M. (2010). Brain plasticity and intellectual ability are influenced by shared genes. J. Neurosci. 30: 5519–5524.
Carrion-Castillo, A., Franke, B. and Fisher, S. E. (2013). Molecular genetics of dyslexia: an overview. Dyslexia. 19: 214–240.
Coon, H. and Carey, G. (1989). Genetic and environmental determinants of musical ability in twins. Behav. Genet. 19: 183–193.
Depue, R. A. and Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behav. Brain Sci. 28: 313–350.
De-Quervain, D. J. F. and Papassotiropoulos, A. (2006). Identification of a genetic cluster influencing memory performance and hippocampal activity in humans. Proc. Natl. Acad. Sci. U.S.A. 103: 4270–4274.
Deutsch, D., Henthorn, T., Marvin, E. and Xu, H. (2006). Absolute pitch among American and Chinese conservatory studentsd: prevalence differences, and evidence for a speech-related critical period. J. Acoust. Soc. Am. 119719-119722.
Dovern, A., Fink, G. R., Fromme, A. C. B., Wohlschläger, A. M., Weiss, P. H. and Riedl, V. (2012). Intrinsic network connectivity reflects consistency of synesthetic experiences. J. Neurosci. 32: 7614–7621.
Drayna, D., Manichaikul, A., De, Lange, M., Snieder, H. and Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science. 291: 1969–1972.
Foster, N. E. V. and Zatorre, R. J. (2010). Cortical structure predicts success in performing musical transformation judgments. Neuroimage. 53: 26–36.
Gaab, N., Gaser, C. and Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. Neuroimage. 31: 255–263.
Gao, L., Tang, S. X. and Yi, J. J. (2018). Musical auditory processing, cognition, and psychopathology in 22q11.2 deletion syndrome. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 177: 765–773.
Gingras, B., Honing, H., Peretz, I., Trainor, L. J. and Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosoph. Transact. B. 370: e20140092.
Goycoolea, M. V., Mena, I., Neubauer, S. G., Levy, R. G., Grez, M. F. and Berger, C. G. (2007). Musical brains: a study of spontaneous and evoked musical sensations without external auditory stimuli. Acta Otolaryngol. 127: 711–721.
Granot, R. Y., Frankel, Y., Gritsenko, V., Lerer, E., Gritsenko, I. and Bachner-Melman, R. (2007). Provisional evidence that the arginine vasopressin 1a receptor gene is associated with musical memory. Evolut. Hum. Behav. 28: 313–318.
Grayton, H. M., Fernandes, C., Rujescu, D. and Collier, D. A. (2012). Copy number variations in neurodevelopmental disorders. Prog. Neurobiol. 99: 81–91.
Gregersen, P. K. (1998). Instant recognition: the genetics of pitch perception. Am. J. Hum. Genet. 62: 221–223. Gregersen, P. K., Kowalsky, E., Kohn, N. and Marvin, E. W. (1999). Absolute pitch: prevalence, ethnic variation, and estimation of the genetic component. Am. J. Hum. Genet. 65: 911–913.
Gregersen, P. K., Kowalsky, E., Kohn, N. and Marvin, E. W. (2001). Early childhood music education and predisposition to absolute pitch: teasing apart genes and environment. Am. J. Med. Genet. 98: 280–282.
Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. R., Asher, J. E., Ballard, D., Freudenberg, J. and Li, W. (2013). Absolute pitch exhibits phenotypic and genetics overlap with synesthesia. Human Molec. Genet. 22: 2097–2104.
Gregersen, P. K. and Kumar, S. (1996). The genetics of perfect pitch. Am. J. Hum. Genet. 59 (Suppl.): A179.
Guo, S. W. (1998). Inflation of sibling recurrence-risk ratio, due to ascertainment bias and/or overreporting. Am. J. Hum. Genet. 63: 252–258.
Henthorn, T. and Deutsch, D. (2007). Ethnicity versus early environment: comment on ‘Early childhood music education and predisposition to absolute pitch: teasing apart genes and environment’ by Peter K. Gregersen, Elena Kowalsky, Nina Kohn, and Elizabeth West Marvin [2000]. Am. J. Med. Genet. A143: 102–103.
Honing, H., Ladinig, O., Háden, G. P. and Winkler, I. (2009). Is beat induction innate or learned: probing emergent meter perception in adults and newborns using event-related brain potentials. Ann. N.Y. Acad. Sci. 1169: 93–96.
Hove, M. J., Sutherland, M. E. and Krumhansi, C. L. (2010). Ethnicity effects in relative pitch. Psychon. Bull. Rev. 17: 310–316.
Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C. and Peretz, I. (2007). Cortical thickness in congenital amusia: when less is better than more. J. Neurosci. 27: 13028–13032.
Järvelä, I. (2018). Genomics studies on musical aptitude, music perception, and practice. Ann. N. Y. Acad. Sci. 1423: 82–91.
Kalmus, H. and Fry, D. B. (1980). On tune deafness (dysmelodia): frequency, development, genetics and musical background. Ann. Hum. Genet. 43: 369–382.
Karma, K. (1994). Auditory and visual temporal structuring: how important is sound to musical thinking. Psychol. Music. 22: 20–30.
Keenan, J. P., Thangaraj, V., Halpern, A. R. and Sclaug, G. (2001). Absolute pitch and planum temporale. NeuroImage. 14: 1402–1408.
Ku, C. S., Cooper, D. N., Polychronakos, C., Naidoo, N., Wu, M. and Soong, R. (2012). Exome sequencing: dual role as a discovery and diagnostic tool. Ann. Neurol. 71: 5–14.
Lai, C. S. L., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. and Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature. 413: 519–523.
Lathrop, G. M., Lalouel, J. M., Julier, C. and Ott, J. (1984). Strategies for multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. U.S.A. 81: 3443–3446.
Levitin, D. J. (2012). What does it mean to be musical? Neuron. 73: 633–637.
Lewis, C. M. and Knight, J. (2012). Introduction to genetic association studies. Cold Spring Harb. Protoc. 7: 297–306.
Li, C. C., Chakravarti, A. and Halloran, S. L. (1987). Estimation of segregation and ascertainment probabilities by discarding the single probands. Genet. Epidemiol. 4: 185–191.
Li, C. C. and Mantel, N. (1968). A simple method of estimating the segregation ratio under complete ascertainment. Am. J. Hum. Genet. 20: 61–81.
Li, G., Wang, J., Rossiter, S. J., Jones, G., Cotton, J. A. and Zhang, S. (2008). The hearing gene Prestin reunites echolocating bats. Proceedings of the National Academy of Sciences. 105 (37): 13959–13964.
Liu, X., Kanduri, C. and Oikkonen, J. (2016). Detecting signatures of positive selection associated with musical aptitude in the human genome. Sci. Rep. 6: 21198. Loui, P., Alsop, D. and Schlaug, G. (2009). Tone deafness: a new disconnection syndrome? J. Neurosci. 29: 10215–10220.
Mariath, L. M., Silva, A. M., Kowalski, T. W., Gattino, G. S., Araujo, G. A., Figueiredo, F. G., Tagliani-Ribeiro, A., Roman, T., Vianna, F. S. L., Schuler-Faccini, L. and Schuch, J. B. (2017). Music genetics research: association with musicality of a polymorphism in the AVPR1A gene. Genet. Molec. Biol. 40: 421–429.
Mandell, J., Schulze, K. and Schlaug, G. (2007). Congenital amusia: an auditory-motor feedback disorder? Restor. Neurol. Neurosci. 25: 323–334.
McDermott, J. and Hauser, M. (2005). The origins of music: innateness, uniqueness, and evolution. Music Percept. 23: 29–59.
Mignault, G. G., Moreau, P., Robitaille, N. and Peretz, I. (2012). Congenital amusia persists in the developing brain after daily music listening. PLoS ONE. 7: e36860.
Mitry, D., Williams, L., Charteris, D. G., Fleck, B. W., Wright, A. F. and Campbell, H. (2011). Population-based estimate of the sibling recurrence risk ratio for rhegmatogenous retinal detach-ment. Invest. Ophthalmol. Vis. Sci. 52: 2551–2555.
Morgan and Linkage. (2003a). In: Carey G. (ed.). Thousand Oaks, CA: Sage Publications, Inc. Chapter 10: Human Genetics for the Social Sciences. Pp. 161–180.
Morley, A. P., Narayanan, M., Mines, R., Molokhia, A., Baxter, S. and Craig, G. (2012). AVPR1A and SLC6A4 polymorphisms in choral singers and non-musicians: a gene association study. PLoS ONE. 7: e31763.
Naj, A. C., Park, Y. S. and Beaty, T. H. (2012). Detecting familial aggregation. In: Elston R. C., Satagopan J. M., Sun S. (eds.) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 119–150.
Nandram, B., Jai-Won, C. and Hongyan, X. (2011). Maximum likelihood estimation for ascertainment bias in sampling siblings. J. Data Sci. 9: 23.
Neale, M. C., Boker, S. M., Xie, G. and Maes, H. H. (2006). Mx: Statistical Modeling. Richmond, VA: Department of Psychiatry. Newbury, D. F. and Monaco, A. P. (2010). Genetic advances in the study of speech and language disorders. Neuron. 68: 309–320.
Oikkonen, J., Huang, Y., Onkamo, P., Ukkola-Vuoti, L., Raijas, P. and Karma, K. (2015). A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Mol. Psychiatry. 20(2): 275-282.
Oikkonen, J. and Järvelä, I. (2014). Genomics approaches to study musical aptitude. Bioessays. 36: 1102–1108.
Park, H., Lee, S., Kim, H. J., Ju, Y. S., Shin, J. Y., Hong, D., von, Grotthuss, M., Lee, D. S., Park, C., Kim, J. H., Kim, B., Yoo, Y. J., Cho, S. I., Sung, J., Lee, C., Kim, J. I. and Seo, J. S. (2012). Comprehensive genome analyses associate UGT8 variants with musical ability in a Mongolian population. J. Med. Genet. 49: 747–752.
Peretz, I. (2009). Music, language and modularity framed in action. Psychol. Belg. 49: 157–175.
Peretz, I., Cummings, S. and Dubé, M. P. (2007). The genetics of congenital amusia (tone deafness): a family-aggregation study. Am. J. Hum. Genet. 81: 582–588.
Peretz, I. and Vuvan, D. T. (2017). Prevalence of congenital amusia. Eur. J. Human Genet. 25: 625–630.
Profita, J. and Bidder, T. G. (1988). Perfect pitch. Am. J. Med. Genet. 29: 763–771.
Pulli, K., Karma, K., Norio, R., Sistonen, P., Göring, H. H. H. and Järvelä, I. (2008). Genome-wide linkage scan for loci of musical aptitude in Finnish families: evidence for a major locus at 4q22. J. Med. Genet. 45: 451–456.
Ross, D. A., Olson, I. R. and Gore, J. C. (2003). Absolute pitch does not depend on early musical training. Ann. N.Y. Acad. Sci. 999: 522–526.
Schnell, A. H. and Sun, X. (2012). Model-based linkage analysis of a quantitative trait. In: Elston R. C., Satagopan J. M., Sun S. (eds.) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 263–284.
Sergeant, D. (1969). Experimental investigation of absolute pitch. J. Res. Music Educ. 17: 135–143. Singleton, A. B. (2011). Exome sequencing: a transformative technology. Lancet Neurol. 10: 942–946. Spencer, C. C. A., Su, Z., Donnelly, P. and Marchini, J. (2009). Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 5: e1000477.
Strachan, T. and Read, A. P. (1999). Complex diseases: theory and results. In: New York, NY: Wiley-Liss Human Molecular Genetics, 2nd edn.
Sun, L. and Dimitromanolakis, A. (2012). Identifying cryptic relationships. In: Elston R. C., Satagopan J. M., Sun S. (eds.) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 47–58.
Szyfter, K. and Witt, M. P. (2020). How far musicality and perfect pitch are derived from genetic factors? J. Appl. Genet. Sep. 61(3): 407-414.
Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F. and Wilson, S. J. (2014). The genetic basis of music ability. Front. Psychol. 5: Art. 658. The association study. (2003b). In: Carey G. (ed.). Thousand Oaks, CA: Sage Publications, Inc. Chapter 11: Human Genetics for the Social Sciences. Pp. 181–192.
Theusch, E., Basu, A. and Gitschier, J. (2009). Genome-wide study of families with absolute pitch reveals linkage to 8q24.21 and locus heterogeneity. Am. J. Hum. Genet. 85: 112–119.
Theusch, E. and Gitschier, J. (2011). Absolute pitch twin study and segregation analysis. Twin Res. Hum. Genet. 14: 173–178.
Trainor, L. J. and Heinmiller, B. M. (1998). The development of evaluative responses to music: infants prefer to listen to consonance over dissonance. Infant Behav. Dev. 21: 77–88.
Trainor, L. J. and Trehub, S. E. (1992). A comparison of infants' and adults' sensitivity to Western musical structure. J. Exp. Psychol. Hum. Percept. Perform. 18: 394–402.
Trainor, L. J. and Trehub, S. E. (1993). What mediates infants' and adults' superior processing of the major over the augmented triad? Music Percept. 11: 185–196.
Trainor, L. J., Tsang, C. D. and Cheung, V. H. W. (2002). Preference for sensory consonance in 2- and 4-month-old infants. Music Percept. 20: 187–194.
Trehub, S. E. (2003). The developmental origins of musicality. Nat. Neurosci. 6: 669–673.
Trehub, S. E. (2006). Infants as musical connoisseurs. In: McPherson G. E. (ed.) (New York, NY: Oxford University Press). The Child as Musician: A Handbook of Musical Development. Pp. 33–49.
Trehub, S. E., Bull, D. and Thorpe, L. A. (1984). Infants' perception of melodies: the role of melodic contour. Child Dev. 55: 821–830.
Trehub, S. E., Schellenberg, E. G. and Kamenetsky, S. B. (1999). Infants' and adults' perception of scale structure. J. Exp. Psychol. Hum. Percept. Perform. 25: 965–975.
Trehub, S. E., Thorpe, L. A. and Morrongiello, B. A. (1987). Organizational processes in infants' perception of auditory patterns. Child Dev. 58: 741–749.
Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K. and Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS ONE 4: e5534.
Ukkola-Vuoti, L., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C. and Raijas, P. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS ONE 8: e56356.
Ukkola-Vuoti, L., Oikkonen, J., Onkamo, P., Karma, K., Raijas, P. and Järvelä, I. (2011). Association of the arginine vasopressin receptor 1A (AVPR1A) haplotypes with listening to music. J. Hum. Genet. 56: 324–329.
Verweij, K. J. H., Mosing, M. A., Zietsch, B. P. and Medland, S. E. (2012). Estimating heritability from twin studies. In: Elston R. C., Satagopan J. M., Sun S. (eds.) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 151–170.
Vinkhuyzen, A. A. E., Van-Der, S. S., De-Geus, E. J. C., Boomsma, D. I. and Posthuma, D. (2010). Genetic influences on “environmental” factors. Genes Brain Behav. 9: 276–287.
Vinkhuyzen, A. A. E., Van-Der, Sluis, S., Posthuma, D. and Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behav. Genet. 39: 380–392.
Visscher, P. M., Hill, W. G. and Wray, N. R. (2008). Heritability in the genomics era-concepts and misconceptions. Nat. Rev. Genet. 9: 255–266.
Watts, C., Murphy, J. and Barnes, B. K. (2003). Pitch matching accuracy of trained singers, untrained subjects with talented singing voices, and untrained subjects with nontalented singing voices in conditions of varying feedback. J. Voice. 17: 185–194.
Weeks, D. E., Lehner, T., Squires, W. E., Kaufmann, C. and Ott, J. (1990). Measuring the inflation of the LOD score due to its maximization over model parameter values in human linkage analysis. Genet. Epidemiol. 7: 237–243.
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I. and Honing, H. (2009). Newborn infants detect the beat in music. Proc. Natl. Acad. Sci. U.S.A. 106: 2468–2471.
Xu, W., Bull, S. B., Mirea, L. and Greenwood, C. M. T. (2012). Model-free linkage analysis of a binary trait. In: Elston R. C., Satagopan J. M., Sun S. (eds.) (New York, NY: Humana Press; Springer). Statistical Human Genetics: Methods and Protocols. Pp. 317–345.