Application of Genetic Algorithms for Medical Diagnosis of Diabetes Mellitus
DOI:
https://doi.org/10.52756/ijerr.2024.v37spl.001Keywords:
Diabetes Mellitus, Mathematical Model, Genetic AlgorithmAbstract
The system of glucose-insulin control and associated problems in diabetes mellitus were studied by mathematical modeling. It is a helpful theoretical tool for understanding the basic concepts of numerous distinct medical and biological functions. It delves into the various risk factors contributing to the onset of diabetes, such as sedentary lifestyle, obesity, family history, viruses, and increasing age. The study emphasizes the importance of mathematical models in understanding the dynamic characteristics of biological systems. The study emphasizes the increasing prevalence of diabetes, especially in India, where urbanization and lifestyle changes contribute to the rising incidence. The present investigation describes the use of John Holland's evolutionary computing approach and the Genetic Algorithm (GA) in diabetes mellitus. The Genetic Algorithm is applied to address issues related to diabetes, offering a generic solution and utilizing MATLAB's Genetic Algorithm tool. The Mathematical Model provides differential equations representing glucose and insulin concentrations in the blood. The results represent testing outcomes for normal, prediabetic, and diabetic individuals, optimized with Genetic Algorithm showcased through fitness value plots. The conclusion highlights the effectiveness of Genetic Algorithm as an optimization tool in predicting optimal samples for diabetes diagnosis. The paper encourages the use of heuristic algorithms, such as Genetic Algorithms, to address complex challenges in the field of diabetes research. Future scope includes further exploration of biomathematics and Genetic Algorithm applications for enhanced understanding and management of diabetes mellitus. It is critical for people with diabetes to consistently check their blood glucose levels and follow their treatment plan.
References
Acharya, C.K., Das, B., Madhu, N.R., Sau, S., Manna De, M., & Sarkar, B. (2023). A Comprehensive Pharmacological Appraisal of Indian Traditional Medicinal Plants with Anti-diabetic Potential. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 163–193, Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_8
Al Ali, H., Daneshkhah, A., Boutayeb, A., & Mukandavire, Z. (2022). Examining Type 1 Diabetes Mathematical Models Using Experimental Data. International Journal of Environmental Research and Public Health, 19(2), 737. https://doi.org/10.3390/ijerph19020737
Al Switi, M., Alshraideh, B., Alshraideh, A., Massad, A., & Alshraideh, M. (2019). Treatment of Diabetes Type II Using Genetic Algorithm. International Association of Online Engineering, 15(11), 53-68. https://doi.org/10.3991/ijoe.v15i11.10751
Alharbi, A., & Alghahtani, M. (2019). Using genetic algorithm and ELM neural networks for feature extraction and classification of type 2-diabetes mellitus. Applied Artificial Intelligence, 33(4), 311-328. https://doi.org/10.1080/08839514.2018.1560545
Babaei, M. (2013). A general approach to approximate solutions of nonlinear differential equations using particle swarm optimization: Applied Soft Computing, 13(7), 3354-3365. https://doi.org/10.1016/j.asoc.2013.02.005
Balasubramanian, A., Balasubramanian, J., Pugazhenthi, A., Balasivaraman, C., Murugadass, D., & Ramalingam, K. (2023). A retrospective, non-randomized, clinical review on the effect of single-dose biosimilar Razumab injection in diabetic macular edema. Int. J. Exp. Res. Rev., 32, 124-130. https://doi.org/10.52756/ijerr.2023.v32.010
Biswas, T., Behera, B. K., & Madhu, N.R. (2023). Technology in the Management of Type 1 and Type 2 Diabetes Mellitus: Recent Status and Future Prospects. 26 pages, Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management. pp. 111–136. Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_6
Gamboa, D., Coria, L. N., & Valle, P. A. (2022). Ultimate Bounds for a Diabetes Mathematical Model Considering Glucose Homeostasis. Axioms, 11(7), 320. https://doi.org/10.3390/axioms11070320
Gupta, R., & Kumar, D. (2017). Hypertension and coronary heart disease risks for a type ii diabetic patient with or without intake of alcohol: A Mathematical Model. Advanced Science, Engineering and Medicine, 9(9), 709-712. https://doi.org/10.1166/asem.2017.2058
Jaiswal, S., & Gupta, P. (2023). GLSTM: A novel approach for prediction of real and synthetic PID diabetes data using GANs and LSTM classification model. Int. J. Exp. Res. Rev., 30, 32-45. https://doi.org/10.52756/ijerr.2023.v30.004
Jasim, W. M., & Al Mashhadany, Y. I. (2021). Diabetics blood glucose control based on GA-FOPID technique: Bulletin of Electrical Engineering and Informatics, 10(1), 516-523. https://doi.org/10.11591/eei.v10i1.2715
Kovalan, S., Mugilan, S., & Balamurugan, S. (2014). Using Genetic Algorithm for efficient mining of Diabetic data: Int. J. Eng. Res. Technol., 3, 613-616. https://doi.org/10.17577/IJERTV3IS040666
Kumar, D., Gupta, R., & Khurana, P. (2021). Mathematical Modeling of Type -2 Diabetes Mellitus as a Risk Factor for Cancer. In Journal of Physics: Conference Series, 1850(1), 012053. https://doi.org/10.1088/1742-6596/1850/1/012053
McCall, J. (2005). Genetic algorithms for modelling and optimization: Journal of computational and Applied Mathematics, 184(1), 205-222. https://doi.org/10.1016/j.cam.2004.07.034
Medhi, J., Karmakar, M., Barman, A., Mondal, S., & Nag, A. (2023). Diabetic retinopathy stage detection using convolutional fine-tuned transfer Learning model. Int. J. Exp. Res. Rev., 31(Spl.), 33-41. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.004
Nandhini, A. U., & Dharmarajan, K. (2023). Random forest and genetic algorithm united with hyperparameter for diabetes prediction by using WBSMOTE, wrapper approach. International Journal of System of Systems Engineering, 13(2), 207-227. https://doi.org/10.1504/IJSSE.2023.131226
Park, A., & Nam, S. (2023). miRDM-rfGA: Genetic algorithm-based identification of a miRNA set for detecting type 2 diabetes. BMC Medical Genomics, 16(1), 195. https://doi.org/10.1186/s12920-023-01636-2
Parlikar, A. S., & Dahe, P. D. (2019). Application of Linear Programming-Genetic Algorithm Combination for Urmodi Reservoir Operation: In International Conference on Reliability, Risk Maintenance and Engineering Management. pp. 98-103. Springer, Singapore. https://doi.org/10.1007/978-981-13-8507-0
Pawar, S., Pawade, K., Nipate, S., Balap, A., Pimple, B., Wagh, V., Kachave, R., & Gaikwad, A. (2023). Preclinical evaluation of the diabetic wound healing activity of phytoconstituents extracted from Ficus racemosa Linn. leaves. Int. J. Exp. Res. Rev., 32, 365-377. https://doi.org/10.52756/ijerr.2023.v32.032
Pramanik, B. (2018). A comparative study on the knowledge, attitude and risk perception regarding complications of type-2 diabetes mellitus between male and female diabetic patients attending diabetic clinics in selected hospital of West Bengal, India. Int. J. Exp. Res. Rev., 15, 16-27. https://doi.org/10.52756/ijerr.2018.v15.004
Rosli, M. M., Yusop, N. S. M., & Fazuly, A. S. (2020). Design of meal intake prediction for gestational diabetes mellitus using genetic algorithm: IAES International Journal of Artificial Intelligence, 9(4), 591. http://doi.org/10.11591/ijai.v9.i4.pp591-599
Roy, R., Chakraborty, A., Jana, K., Sarkar, B., Biswas, P., & Madhu, N.R. (2023). The Broader Aspects of Treating Diabetes with the Application of Nanobiotechnology. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 137–162, Online ISBN-978-981-19-0027-3, https://doi.org/10.1007/978-981-19-0027-3_7
Sandhya, S., & Kumar, D. (2019). Model for Gestational Diabetes on web-based parameters: Recent Patents on Engineering, 13(1), 48-54. http://dx.doi.org/10.2174/1872212112666180601085016
Sandhya, S., & Kumar, D. (2011) Mathematical model for glucose-insulin regulatory system of diabetes mellitus. Advances in Applied Mathematical Biosciences, 2(1), 39-46. https://www.ripublication.com/aamb/aambv2n1_2.pdf
Santhanam, T., & Padmavathi, M. S. (2015). Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Procedia Computer Science, 47, 76-78. https://doi.org/10.1016/j.procs.2015.03.185
Sapna, S., Tamilarasi, A., & Pravin Kumar, M. (2012). Implementation of genetic algorithm in predicting diabetes. Int. J. Comput. Sci, 9, 234-240. https://ijcsi.org/papers/IJCSI-9-1-3-234-240.pdf
Sarkar, S., Sadhu, S., Roy, R., Tarafdar, S., Mukherjee, N., Sil, M., Goswami, A., & Madhu, N.R. (2023). Contemporary Drifts in Diabetes Management. Int. J. App. Pharm., 15( 2), 1-9.
Sur, T., Das, A., Bashar, S., Tarafdar, S., Sarkar, B., & Madhu, N.R. (2023). Biochemical Assay for Measuring Diabetes Mellitus. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 1–20, Online ISBN-978-981-19-0027-3, https://doi.org/10.1007/978-981-19-0027-3_1
Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: Diabetes Care, 27(5), 1047-1053. https://doi.org/10.2337/diacare.27.5.1047
Yadav, D. K., Azad, C., Bala, K., & Sharma, P. K. (2022). Genetic Algorithm and Gaussian Radial Basis Function Network (GAGRBFN) Based Diabetes Mellitus Prediction System. Springer, Singapore, In Advances in Distributed Computing and Machine Learning, pp. 279-286. https://www.sciencegate.app/keyword/39207