Medicinal Plants Approach for Diabetes Mellitus-A Computational Model

Authors

DOI:

https://doi.org/10.52756/ijerr.2024.v44spl.006

Keywords:

Diabetes Mellitus, Medicinal Plants, Blood Glucose level, Insulin resistance Differential equation model

Abstract

The multidimensional metabolic syndrome that includes diabetes mellitus poses a serious threat to world health. There is an increasing interest in researching herbal remedies for their possible therapeutic advantages, even as traditional allopathic treatments continue to be widely used. This work throws light on the multiple ways of metabolism and biochemical interactions of medicinal plants in the control of glucose level, highlighting their crucial role in the process. The work clarifies several herbal extracts' efficacy and safety profiles, such as Aloe vera, Garlic, Gurmar, Bitter Melon, Neem, Tulsi, and through a thorough literature review and empirical evidence. These plants, which are abundant in bioactive substances like tannins, flavonoids, and alkaloids, show promise in treating insulin resistance, improving pancreatic function, and controlling blood sugar level. A further assessment of the rising risk associated with diabetes mellitus is discussed, and a differential equation model for diabetes mellitus is developed to minimize the complications. When using medicinal plants to treat diabetes, several factors are considered, including blood sugar level, sugar intake activity, and plasma insulin concentrations. The stability criterion for the mathematical model is examined through the system of differential equations. A representation highlighting the medicinal plants that can aid individuals with diabetes mellitus is provided. The blood sugar level, insulin generalization variable and plasma insulin concentration have all been measured at different points in time. Aloe vera, Gurmar, Garlic, Tulsi, Bitter Melon and Neem are among the medicinal plants selected for their demonstrated anti-hyperglycemic properties due to their easy availability in India. Mathematical solutions were calculated for every plant and proved to be steady.

References

Acharya, C.K., Das, B., Madhu, N.R., Sau, S., Manna De, M., & Sarkar, B. (2023). A Comprehensive Pharmacological Appraisal of Indian Traditional Medicinal Plants with Anti-diabetic Potential. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 163–193, Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_8

Alinejad-Mofrad, S., Foadoddini, M., Saadatjoo, S.A. & Shayesteh, M., 2015. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: a randomized controlled-trial. Journal of Diabetes & Metabolic Disorders, 14, 1-7. https://doi.org/10.1186%2Fs40200-015-0137-2

Al-Qattan, K., Thomson, M., & Ali, M. (2008). Garlic (Allium sativum) and ginger (Zingiber officinale) attenuate structural nephropathy progression in streptozotocin-induced diabetic rats. e-SPEN, The European e-Journal of Clinical Nutrition and Metabolism, 3, e62-e71. https://doi.org/10.1016/j.eclnm.2007.12.001

Anwar, M. M., & Abdel, M.A. M. (2003). Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(4), 539-547. https://doi.org/10.1016/s1095-6433(03)00114-4

Ashraf, R., Khan, R.A., & Ashraf, I. (2011). Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J. Pharm. Sci., 24(4), 565-570. https://pubmed.ncbi.nlm.nih.gov/21959822/

Augusti, K. T. (1996). Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.). Indian Journal of Experimental Biology, 34(7), 634-640. https://pubmed.ncbi.nlm.nih.gov/8979497/

Bakare R.I., Magbagbeola O.A., Akinwande A.I., & Okunowo O.W. (2010). Nutritional and chemical evaluation of Momordica charantia. Journal of Medicinal Plants Research, 4(21), 2189–2193. https://doi.org/10.5897/JMPR10.274

Banerjee, J., Chanda, R., & Samadder, A. (2019). Anti-diabetic activity of Momordica charantia or bitter melon: a review. Acta Scientific Pharmaceutical Sciences, 3, 24-30. https://doi.org/10.1016%2FS2222-1808(13)60052-3

Banzi, W., Kambutse, I., Dusabejambo, V., Rutaganda, E., Minani, F., Niyobuhungiro, J., Mpinganzima, L., & Ntaganda, J.M. (2021). Mathematical Modelling of Glucose?Insulin System and Test of Abnormalities of Type 2 Diabetic Patients. International Journal of Mathematics and Mathematical Sciences, 2021(1), 6660177. https://doi.org/10.1155/2021/6660177

Biswas, T., Behera, B. K., Madhu, N.R. (2023). Technology in the Management of Type 1 and Type 2 Diabetes Mellitus: Recent Status and Future Prospects. 26 pages, Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 111–136. Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_6

Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, Liang E., Nik, A., Soohg, K., Tan, S., Mallikarjuna R. P., Bapi, G., & Kesharwani, P. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine, 8(3), 361-376. https://doi.org/10.1016/j.jtcme.2017.08.012

Chudtong, M., & De Gaetano, A. (2021). A mathematical model of food intake. Mathematical Biosciences and Engineering, 18(2), 1238-1279. https://doi.org/10.3934/mbe.2021067

Dhakar, S., & Tare, H. (2023). Therapeutic Potential of Polyherbal Tablets: A Comprehensive Assessment of Pharmacological Activity. Int. J. Exp. Res. Rev., 34(Special Vol.), 97-105. https://doi.org/10.52756/ijerr.2023.v34spl.010

Huard, B., & Kirkham, G. (2022). Mathematical modelling of glucose dynamics. Current Opinion in Endocrine and Metabolic Research, 25, 100379. https://doi.org/10.1016/j.coemr.2022.100379

Hussain, E.H.M., Jamil, K., & Rao, M. (2001). Hypoglycaemic, hypolipidemic and antioxidant properties of tulsi (Ocimum sanctum Linn.) on streptozotocin induced diabetes in rats. Indian Journal of Clinical Biochemistry, 16, 190-194. https://doi.org/10.1007/BF02864859

Jaiswal, S., & Gupta, P. (2023). GLSTM: A novel approach for prediction of real and synthetic PID diabetes data using GANs and LSTM classification model. International Journal of Experimental Research and Review, 30, 32-45. https://doi.org/10.52756/ijerr.2023.v30.004

Jaiswal, S., & Gupta, P. (2023). GLSTM: A novel approach for prediction of real & synthetic PID diabetes data using GANs and LSTM classification model. Int. J. Exp. Res. Rev., 30, 32-45. https://doi.org/10.52756/ijerr.2023.v30.004

Khurana P., Kumar D., & Gupta R. (2019). A Computational Model to Access the Impact of Medicinal based Plants for Curing of Type-1 Diabetes Mellitus, Ambient Science, vol. (6). https://doi.org/10.21276/ambi.2019.06.sp1.ta01

Liu, J., Chen, J., Wang, C., & Qui, M. (2009). New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules, 14, 4804–4813. https://doi.org/10.3390/molecules14124804

Lopez-Palau, N. E., & Olais-Govea, J. M. (2020). Mathematical model of blood glucose dynamics by emulating the pathophysiology of glucose metabolism in type 2 diabetes mellitus. Scientific Reports, 10(1), 12697. https://doi.org/10.1038/s41598-020-69629-0

Mahajan, N., Shruti R., Monika V., Mayur P., & Shashi A. (2013). A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition, 3(2), 185-192. https://doi.org/10.1016/j.bionut.2012.08.002

Medhi, J., Karmakar, M., Barman, A., Mondal, S., & Nag, A. (2023). Diabetic retinopathy stage detection using convolutional fine-tuned transfer Learning model. International Journal of Experimental Research and Review., 31(Spl Volume), 33-41. https://doi.org/10.52756/10.52756/ijerr.2023.v31spl.004

Muhtadi, A., Yola, I., Wulan, C. A., Rini, H., & Ade, Z. (2017). Hypoglycemic activity of 10 medicinal plants extracts in glucose induced mice. Asian Journal of Pharmaceutical and Clinical Research, 4, 2455-3891. http://dx.doi.org/10.22159/ajpcr.2017.v10s2.19473

Oyelere, S. F., Oluwatobi H. A., Titilayo E. A., George B. S. P., Bolaji C. D. O., Ajibola O. I., & Olalekan A. A. (2022). A detailed Review on the Phytochemical Profiles and Antidiabetic Mechanisms of Momordica charantia. Heliyon, 8(4). https://doi.org/10.1016%2Fj.heliyon.2022.e09253

Paliwal, R., Kathori, S., & Upadhyay, B. (2009). Effect of Gurmar (Gymnema sylvestre) powder intervention on the blood glucose level among diabetics. Studies on Ethno-Medicine, 3(2), 133-135.

Paul, N., Katoch, M., Singh, N., Negi, A., & Murthy, S. (2024). Role of Phytoconstituents of Medicinal Plants in Curing Type 2 Diabetes. Journal of Food Chemistry and Nanotechnology, 10(S1), S34-S41. http://dx.doi.org/10.17756/jfcn.2024-s1-005

Pawar, S., Pawade, K., Nipate, S., Balap, A., Pimple, B., Wagh, V., Kachave, R., & Gaikwad, A. (2023). Preclinical evaluation of the diabetic wound healing activity of phytoconstituents extracted from Ficus racemosa Linn. leaves. International Journal of Experimental Research and Review, 32, 365-377. https://doi.org/10.52756/ijerr.2023.v32.032

Pramanik, B. (2018). A comparative study on the knowledge, attitude and risk perception regarding complications of type-2 diabetes mellitus between male and female diabetic patients attending diabetic clinics in selected hospital of West Bengal, India. International Journal of Experimental Research and Review., 15, 16-27. https://doi.org/10.52756/ijerr.2018.v15.004

Roy, A., & Robert S. P. (2007). Dynamic modelling of exercise effects on plasma glucose and plasma insulin concentrations. Journal of Diabetes Science and Technology, 1(3), 338-347. https://doi.org/10.1177/193229680700100305

Roy, R., Chakraborty, A., Jana, K., Sarkar, B., Biswas, P., & Madhu, N.R. (2023). The Broader Aspects of Treating Diabetes with the Application of Nanobiotechnology. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 137–162, Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_7

Tyagi, K., Kumar, D., & Gupta, R. (2024). Application of Genetic Algorithms for Medical Diagnosis of Diabetes Mellitus. International Journal of Experimental Research and Review, 37(Special Vo), 1-10. https://doi.org/10.52756/ijerr.2024.v37spl.001

Sarkar, S., Sadhu, S., Roy, R., Tarafdar, S., Mukherjee, N., Sil, M., Goswami, A., & Madhu, N.R. (2023). Contemporary Drifts in Diabetes Management. Int. J. App. Pharm., 15(2), 1-9. https://doi.org/10.22159/ijap.2023v15i2.46792

Satyanarayana, K., Sravanthi, K., Shaker, I. A., & Ponnulakshmi, R. (2015). Molecular approach to identify antidiabetic potential of Azadirachta indica. Journal of Ayurveda and Integrative Medicine, 6(3), 165. https://doi.org/10.4103/0975-9476.157950

Shaefer, J.C.F., Kushner, P., & Aguilar, R. (2015). User’s guide to mechanism of action and clinical use of CLP-1 receptor agonists. Post graduate Medicine, 127(8), 818-826. https://doi.org/10.1080/00325481.2015.1090295

Singh, V.K., & Singh, D.K. (2008). Pharmacological Effects of Garlic (Allium sativum L.). Annual Review of Biomedical Sciences, 10, 6-26. http://dx.doi.org/10.5016/1806-8774.2008.v10p6

Sugiyanto, & Khalda, A. L. (2020). Mathematical Modeling Effect Habbatussauda on Diabetes Mellitus. In Proceeding International Conference on Science and Engineering, 3, 379-382. https://doi.org/10.14421/icse.v3.532

Sulistyo, A. H. S., W. S. S., & Maneewat, K. (2020). Diabetic foot care knowledge and behaviors of individuals with diabetes mellitus in Indonesia. GSTF Journal of Nursing and Health Care (JNHC), 5(1). http://dx.doi.org/10.5176/2345-7198_5.1.4

Sur, T., Das, A., Bashar, S., Tarafdar, S., Sarkar, B., & Madhu, N.R. (2023). Biochemical Assay for Measuring Diabetes Mellitus. Springer Nature Singapore Pte Ltd., Advances in Diabetes Research and Management, pp. 1–20, Online ISBN-978-981-19-0027-3. https://doi.org/10.1007/978-981-19-0027-3_1

Urbina, G., Riahi, D. N., & Bhatta, D. (2020). Mathematical modeling of nonlinear blood glucose-insulin dynamics with beta cells effect. Applications and Applied Mathematics: An International Journal (AAM), 15(1), 10. https://digitalcommons.pvamu.edu/aam/vol15/iss1/10

Van, D., Henk, A., Frans, V. H., Bart, V.B., Rick, R., & Harry, C. (2003). Provider–patient interaction in diabetes care: effects on patient self-care and outcomes: a systematic review. Patient Education and Counseling, 51(1), 17-28. https://doi.org/10.1016/s0738-3991(02)00122-2

Verma, S., Gupta, M., Popli, H., & Aggarwal, G. (2018). Diabetes mellitus treatment using herbal drugs. International Journal of Phytomedicine, 10(1), 1-10. https://doi.org/10.5138/09750185.2181

Vikhe, S., Aladi, P., & Vikhe, R. (2024). Antidiabetic and antihyperlipidemic effects of crude fractions from Chlorophytum borivilianum root methanolic extract on streptozotocin induced diabetic rats and phytochemical investigation by LCMS analysis. International Journal of Experimental Research and Review, 38, 26-36. https://doi.org/10.52756/ijerr.2024.v38.003

Xie, X. (2023). Steady solution and its stability of a mathematical model of diabetic atherosclerosis. Journal of Biological Dynamics, 17(1), 2257734. https://doi.org/10.1080/17513758.2023.2257734

Published

2024-10-30

How to Cite

Tyagi, K., Kumar, D., & Gupta, R. (2024). Medicinal Plants Approach for Diabetes Mellitus-A Computational Model. International Journal of Experimental Research and Review, 44, 66–75. https://doi.org/10.52756/ijerr.2024.v44spl.006