Energetics and Economics of Rabi Maize as Influenced by Smart Nutrient Management Under South Odisha Conditions
DOI:
https://doi.org/10.52756/ijerr.2024.v44spl.019Keywords:
Maize, Energy, Economics, Cost of cultivation, Precision nutrient management, Nano nitrogen, agricultural sustainabilityAbstract
Cereal crop cultivation is one of the essential agricultural practices adopted worldwide to feed human beings, providing dietary energy and food security. Maize is important in different cereal crops' areas, production, and productivity. In high-input-demanding crops like maize, it is mandatory to evaluate the energy input and output along with the economics of the study for better optimization of resources and efficient management of inputs in maize cultivation. The present study was conducted at the Postgraduate Research Farm of Centurion University of Technology and Management, Odisha, India, for two consecutive years during the Rabi season (November-March) of 2021-22 and 2022-23. The experiment was carried out in brown forest soil, sandy loam in texture and a Randomized Complete Block Design with 13 treatments, and each treatment was replicated thrice. The treatments comprise various graded fertilizer levels, precision nitrogen management treatments, decision support systems-based nutrient management and nano nitrogen treatment. The results revealed that among the nutrient management treatments, the highest input energy (21546.8 MJ ha-1) was recorded in the treatment T4: 150% RDF. In terms of output energy and net energy, the highest values were recorded in the treatments T10: CCM-based sufficiency index at 90%-95% and T4: 150% RDF. The energy use efficiency and energy productivity were recorded as the highest values in the treatments T9: CCM-based sufficiency index at 85%-90%. Further, among the nutrient management treatments, the maximum cost of cultivation was incurred in the treatment T4: 150% RDF and it was closely followed by T9: CCM-based sufficiency index at 85%-90% and T10: CCM-based sufficiency index at 90%-95%. The highest gross and net returns were recorded in the treatment T10: CCM-based SI at 90%-95%. In the case of the benefit-cost ratio, the highest value (1.29 and 1.24 for two consecutive years of the study, respectively) was recorded in the treatment T10: CCM-based sufficiency index at 90%-95%. The findings of this study demonstrate the potential of precision nutrient management through the CCM Sufficiency index in Rabi maize cultivation under South Odisha for more sustainability and productivity with the highest profitability.
References
Bawa, K. S., & Seidler, R. (2023). Sustainable pathways toward reimagining India’s agricultural systems. Communications Earth and Environment, 4(1). https://doi.org/10.1038/s43247-023-00902-6
Boregowda, Y. S., Puttavenkategowda, T., Sannegowda, P. S., & Kempegowda, S. G. (2019). Precision nitrogen management in drip irrigated maize (Zea mays L.). E3S Web of Conferences, 117, 00010. https://doi.org/10.1051/e3sconf/201911700010
Choudhary, R. L., Behera, U. K., Singh, H. V., Meena, M. D., Dotaniya, M. L., & Jat, R. S. (2020). Energetics and nitrogen-use efficiency of Kharif maize in conservation agriculture-based maize (Zea mays)–wheat (Triticum aestivum) sequence. International Journal of Chemical Studies, 8(2), 1252–1258. https://doi.org/10.22271/chemi.2020.v8.i2s.8937
Durgude, S. A., Ram, S., Kumar, R., Singh, S. V., Singh, V., Durgude, A. G., Pramanick, B., Maitra, S., Gaber, A., & Hossain, A. (2022). Synthesis of mesoporous silica and graphene-based FeO and ZnO nanocomposites for nutritional biofortification and sustained productivity of rice (Oryza sativa L.). Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/5120307
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security, 14, 1295–1319. https://doi.org/10.1007/s12571-022-01288-7
Fayaz, S., Kanth, R. H., Bhat, T. A., Valipour, M., Iqbal, R., Munir, A., Nazir, A., Mir, S.M., Ahanfer, A.S, Al-Ashkar, I., & Sabagh, A. E. (2022). Leaf Color Chart (LCC)-Based precision nitrogen management for assessing phenology, agrometeorological indices, and sustainable yield of hybrid maize genotypes under temperate climate. Agronomy, 12(12), 2981. https://doi.org/10.3390/agronomy12122981
Ghosh, D., Brahmachari, K., Brestic, M., Ondrisik, P., Hossain, A., Skalicky, M., Sarkar, S., Moulick, D., Dinda, N. K., Das, A., & Pramanick, B. (2020). Integrated weed and nutrient management improve yield, nutrient uptake, and economics of maize in the rice-maize cropping system of Eastern India. Agronomy, 10(12), 1906. https://doi.org/10.3390/agronomy10121906
Ghosh, D., Brahmachari, K., Das, A., Hassan, M. M., Mukherjee, P. K., Sarkar, S., Dinda, N. K., Pramanick, B., Moulick, D., Maitra, S., & Hossain, A. (2021). Assessment of energy budgeting and its indicator for sustainable nutrient and weed management in a rice-maize-green gram cropping system. Agronomy, 11(1), 166. https://doi.org/10.3390/agronomy11010166
Giller, K. E., Delaune, T., Silva, J. V., Descheemaeker, K., Van De Ven, G., Schut, A. G., van Wijk, M., Hammond, J., Hochman, Z., Taulya, G., Chikowo, R., Narayanan, S., Kishore, A., Bresciani, F., Teixeira, M.H., Andersson A.J., & Van Ittersum, M.K. (2021). The future of farming: Who will produce our food? Food Security, 13(5), 1073–1099. https://doi.org/10.1007/s12571-021-01184-6
Government of Odisha. (2020). Five decades of Odisha agriculture statistics. Department of Agriculture & Farmers’ Empowerment. Available at: https://agri.odisha.gov.in/node/123795
Hafez, F. S., Sa’di, B., Safa-Gamal, M., Taufiq-Yap, Y., Alrifaey, M., Seyedmahmoudian, M., Stojcevski, A., Horan, B., & Mekhilef, S. (2023). Energy efficiency in sustainable buildings: A systematic review with taxonomy, challenges, motivations, methodological aspects, recommendations, and pathways for future research. Energy Strategy Reviews, 45, 101013. https://doi.org/10.1016/j.esr.2022.101013
Hargilas, Singh, A. K., Jat, S. L., Rokadia, P. K., & Kumar, A. (2017). Response of maize (Zea mays) hybrids to nutrient management practices for enhancing productivity and profitability under sub-humid condition of Southern Rajasthan. Indian Journal of Agronomy, 62(3), 326–331. https://doi.org/10.59797/ija.v62i3.4302
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25026-3
Hercher-Pasteur, J., Loiseau, E., Sinfort, C. C., & Hélias, A. (2020). Energetic assessment of the agricultural production system: A review. Agronomy for Sustainable Development, 40(4). https://doi.org/10.1007/s13593-020-00627-2
Hossain, A., Skalicky, M., Brestic, M., Mahari, S., Kerry, R. G., Maitra, S., Sarkar, S., Saha, S., Bhadra, P., Popov, M., Islam, M. T., Hejnak, V., Vachova, P., Gaber, A., & Islam, T. (2021). Application of nanomaterials to ensure quality and nutritional safety of food. Journal of Nanomaterials, 336082. https://doi.org/10.1155/2021/9336082
Hulmani, S., Salakinkop, S. R., & Somangouda, G. (2022). Productivity, nutrient use efficiency, energetic, and economics of winter maize in South India. PLOS ONE, 17(7), 0266886. https://doi.org/10.1371/journal.pone.0266886
Jiang, M., Dong, C., Bian, W., Zhang, W., & Wang, Y. (2024). Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-57031-z
Joshi, N., Chandrashekara, C. P., & Potdar, M. P. (2018). Assessment of precision nutrient management techniques in maize and their effect on yield, nutrient use efficiency, and economics. International Journal of Applied and Pure Science and Agriculture, 4(1), 13–20. https://doi.org/10.22623/IJAPSA.2018.4003.YAL3Z
Kamarianakis, Z., & Panagiotakis, S. (2023). Design and implementation of a low-cost chlorophyll content meter. Sensors, 23(5), 2699. https://doi.org/10.3390/s23052699
Kazemi, N., Parashkoohi, M. G., Mohammadi, A., & Zamani, D. M. (2023). Environmental life cycle assessment and energy-economic analysis in different cultivation of microalgae-based optimization method. Results in Engineering, 19, 101240. https://doi.org/10.1016/j.rineng.2023.101240
Kumar, A., Singh, R., Babu, S., Avasthe, R. K., Das, A., Pandey, A., Gudade, A.B., Devdas, R., Saha, S., & Rathore, S. S. (2024). Integrated organic nutrient management: A sustainable approach for cleaner maize (Zea mays L.) production in the Indian Himalayas. Organic Agriculture, 14(3), 373–393. https://doi.org/10.1007/s13165-024-00471-8
Kushwah, A., Lalita, B., Thakur, N. S., Kirar, S. K., & Choudhary, S. K. (2019). Energetics of maize production system as influenced by varieties and nitrogen scheduling. Journal of Experimental Biology and Agricultural Sciences, 7(5), 462–467. https://doi.org/10.18006/2019.7(5).462.467
Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bhadra, P., Palai, J. B., & Jena, J. (2021). Intercropping – A low input agricultural strategy for food and environmental security. Agronomy, 11(2), 343.
https://doi.org/10.3390/agronomy11020343
Maitra, S., Patro, T. S. S. K., Reddy, A., Hossain, A., Pramanick, B., Brahmachari, K., Krishna Prasad, K., Santosh, D. T., Mandal, M., Shankar, T., Sagar, L., Banerjee, M., Palai, J. B., Subhashisa Praharaj, S., & Sairam, M. (2023). Brown top millet (Brachiaria ramosa L. Stapf; Panicum ramosum L.) – The neglected and smart crop in fighting against hunger and malnutrition. In M. Farooq & K. H. M. Siddique (Eds.), Neglected and Underutilized Crops (pp. 221–245). Cham: Springer Nature Switzerland.
https://doi.org/10.1016/B978-0-323-90537-4.00012-0
Maitra, S., Sahoo, U., Sairam, M., Gitari, H. I., Rezaei-Chiyaneh, E., Battaglia, M. L., & Hossain, A. (2023). Cultivating sustainability: A comprehensive review on intercropping in a changing climate. Research on Crops, 24(4), 702–715. https://doi.org/10.31830/2348-7542.2023.ROC-1020
Majeed, Y., Khan, M. U., Waseem, M., Zahid, U., Mahmood, F., Majeed, F., Sultan, M. & Raza, A. (2023). Renewable energy as an alternative source for energy management in agriculture. Energy Reports, 10, 344–359.
https://doi.org/10.1016/j.egyr.2023.06.032
Miao, Y. (2023). Precision nutrient management. In: Zhang, Q. (Ed.), Encyclopedia of Smart Agriculture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-89123-7_154-1
Midya, A., Saren, B. K., Dey, J. K., Maitra, S., Praharaj, S., Gaikwad, D. J., Gaber, A., Alhomrani, M. & Hossain, A. (2021). Crop establishment methods and integrated nutrient management improve: Part ii. nutrient uptake and use efficiency and soil health in rice (Oryza sativa L.) field in the lower Indo-Gangetic Plain, India. Agronomy, 11(9), 1894. https://doi.org/10.3390/agronomy11091894
Molotoks, A., Smith, P., & Dawson, T. P. (2020). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10(1), e261. https://doi.org/10.1002/fes3.261
Moulick, D., Mukherjee, A., Das, A., Roy, A., Majumdar, A., Dhar, A., Pattanaik, B. K., Chowardhara, B., Ghosh, D., Upadhyay, M. K., Yadav, P., Hazra, S., Sarkar, S., Mahanta, S., Santra, S., Choudhury, S., Maitra, S., Mishra, U. N., Bhutia, K. L., Skalicky, M., Obro?ník, O. O., Barek, V., Brestic, M., & Hossain, A. (2024). Selenium – An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. Ecotoxicology and Environmental Safety, 270, 115832. https://doi.org/10.1016/j.ecoenv.2023.115832
Muduli, L., & Sahu, S. (2019). Effect of nitrogen point placement on energetic and soil enzymatic activities on long-term conservation agriculture-based maize (Zea mays)-wheat (Triticum aestivum) system of western Indo-Gangetic plains. Indian Journal of Agricultural Sciences, 89(12), 2102–2106. https://doi.org/10.56093/ijas.v89i12.96282
Nagarjun, P., & Yogananda, S. B. (2017). Effect of precision nitrogen management on yield, nitrogen, and water use efficiency of drip irrigated maize (Zea mays L.). The Bioscan, 11(2), 1307–1309.
Pahadi, P., Sapkota, M., Thapa, D., & Pradhan, S. (2017). Cluster and principal component analysis for the selection of maize (Zea mays L.) genotypes. Int. J. Exp. Res. Rev., 9, 5-10. Retrieved from https://qtanalytics.in/journals/index.php/IJERR/article/view/1300
Pourmehdi, K., & Kheiralipour, K. (2024). Net energy gain efficiency, a new indicator to analyze energy systems, case study: comparing wheat production systems. Results in Engineering, 22, 102211. https://doi.org/10.1016/j.rineng.2024.102211
Pramanick, B., Kumar, M., Naik, B. M., Kumar, M., Singh, S. K., Maitra, S., Naik, B. S. S. S., Rajput, V. D., & Minkina, T. (2022). Long-term conservation tillage and precision nutrient management in maize-wheat cropping system: Effect on soil properties, crop production, and economics. Agronomy, 12(11), 2766. https://doi.org/10.3390/agronomy12112766
Raut, S., Ghimire, S., Kunwar, C., Kharel, R., Sapkota, M., & Pradhan, S. (2017). Assessing diversity of Maize (Zea mays L.) genotypes based on multivariate analysis of the quantitative traits. Int. J. Exp. Res. Rev., 9, 63-69. Retrieved from https://qtanalytics.in/journals/index.php/IJERR/article/view/1304
Ray, S., Maitra, S., Sairam, M., Sravya, M., Priyadarshini, A., Shubhadarshi, S. & Padhi, D. P. (2024). An unravelled potential of foliar application of micro and beneficial nutrients in cereals for ensuring food and nutritional security. International Journal of Experimental Research and Review, 41, 19–42. https://doi.org/10.52756/ijerr.2024.v41spl.003
Ren, H., Han, K., Liu, Y., Zhao, Y., Zhang, L., He, Q., Zhenhai, L, Zhang, J., Liu, P., Wang, H., Zhang, J., & Zhao, B. (2021). Improving smallholder farmers’ maize yields and economic benefits under sustainable crop intensification in the North China Plain. The Science of the Total Environment, 763, 143035. https://doi.org/10.1016/j.scitotenv.2020.143035
Yohannes, Z., Yoseph, T., Kiflu, A., Ayalew, T., & Haile, A. (2024). Liquid bio-slurry enhances the productivity of N-fertilized maize under field conditions in Ethiopia. International Journal of Experimental Research and Review, 43(Spl Vol), 13–31.
https://doi.org/10.52756/ijerr.2024.v43spl.002
Sagar, L., Maitra, S., Singh, S., & Sairam, M. (2023). Influence of precision nutrient management on dry matter accumulation and partitioning of rice in southern Odisha. Agricultural Science Digest, 43(6), 767–775. https://doi.org/10.18805/ag.D-5822
Sairam, M., Maitra, S., Sagar, L., Krishna, T. G., & Sahoo, U. (2023b). Precision nutrient management on the growth and productivity of Rabi maize (Zea mays L.) under light-textured brown forest soils of Odisha. Research on Crops, 24(3), 487–495. https://doi.org/10.31830/2348-7542.2023.ROC-989
Sairam, M., Maitra, S., Sahoo, U., Sagar, L., & Krishna, T. G. (2023a). Evaluation of precision nutrient tools and nutrient optimization in maize (Zea mays L.) for enhancement of growth, productivity, and nutrient use efficiency. Research on Crops, 24(4), 666–677. https://doi.org/10.31830/2348-7542.2023.ROC-1016
Sairam, M., Maitra, S., Sain, S., Gaikwad, D. J., & Sagar, L. (2024). Dry matter accumulation and physiological growth parameters of maize as influenced by different nutrient management practices. Agricultural Science Digest, 4(2).
https://doi.org/10.18805/ag.D-5835
Santosh, D. T., Debnath, S., Maitra, S., Sairam, M., Sagar, L. L., Hossain, A., & Moulick, D. (2024). Alleviation of climate catastrophe in agriculture through adoption of climate-smart technologies. In M. Brestic, M. Skalicky & P. Ondrisik (Eds.), Climate Crisis: Adaptive Approaches and Sustainability, pp. 307–332. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-44397-8_17
Sarmah, B., Baruah, V. J., Dutta, M., Begum, M., & Deka, B. (2024). Precision nutrient management for field and horticultural crops. In Elsevier eBooks, pp. 317–344. https://doi.org/10.1016/b978-0-323-91068-2.00013-8
Shyam, C. S., Rathore, S. S., Shekhawat, K., Singh, R. K., Padhan, S. R., & Singh, V. K. (2021). Precision nutrient management in maize (Zea mays) for higher productivity and profitability. Indian Journal of Agricultural Sciences, 91(6), 933–935. https://doi.org/10.56093/ijas.v91i6.114303
Tandzi, L. N., & Mutengwa, C. S. (2019). Estimation of maize (Zea mays L.) yield per harvest area: Appropriate methods. Agronomy, 10(1), 29. https://doi.org/10.3390/agronomy10010029
Varshini, S. V., & Babu, R. (2019). Effect of graded levels and split application of nitrogen in yield, yield attributes and economics of hybrid maize. Journal of Pharmacognosy and Phytochemistry, 8(6), 882–887.
Wang, C., Guo, L., Li, Y., & Wang, Z. (2012). Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Systems Biology, 6, 9. https://doi.org/10.1186/1752-0509-6-s2-s9
Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., & Václavík, T. (2019). Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications, 10(1), 2844.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Academic Publishing House (IAPH)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.